Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36325150

RESUMO

Occupational exoskeletons and exosuits have been shown to reduce muscle demands and fatigue for physical tasks relevant to a variety of industries (e.g. logistics, construction, manufacturing, military, healthcare). However, adoption of these devices into the workforce has been slowed by practical factors related to comfort, form-factor, weight, and not interfering with movement or posture. We previously introduced an un-motorized, low-profile, dual-mode exosuit comprised of textile and elastic materials to address these adoption barriers. Here we build upon this prior work by introducing an extension mechanism that increases the moment arm of the exosuit while in engaged mode, then collapses in disengaged mode to retain key benefits related to being lightweight, low-profile, and unobstructive. Here we demonstrate both analytically and empirically how this extensible exosuit concept can (i) reduce device-to-body forces (which can improve comfort for some users and situations), or (ii) increase the magnitude of torque assistance about the low back (which may be valuable for heavy-lifting jobs) without increasing shoulder or leg forces relative to the prior form-fitting exosuit. We also introduce a novel mode-switching mechanism, as well as a human-exosuit biomechanical model to elucidate how individual design parameters affect exosuit assistance torque and device-to-body forces. The proof-of-concept prototype, case study, and modeling work provide a foundation for understanding and implementing extensible exosuits for a broad range of applications. We envision promising opportunities to apply this new dual-mode extensible exosuit concept to assist heavy-lifting, to further enhance user comfort, and to address the unique needs of last-mile delivery workers.

2.
Sci Rep ; 10(1): 15958, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32994427

RESUMO

We investigated the extent to which an un-motorized, low-profile, elastic exosuit reduced the rate of fatigue for six lumbar extensor muscles during leaning. Six healthy subjects participated in an A-B-A (withdrawal design) study protocol, which involved leaning at 45º for up to 90 s without exosuit assistance (A1), then with assistance (B), then again without assistance (A2). The exosuit provided approximately 12-16 Nm of lumbar extension torque. We measured lumbar muscle activity (via surface electromyography) and assessed fatigue rate via median frequency slope. We found that five of the six subjects showed consistent reductions in fatigue rate (ranging from 26% to 87%) for a subset of lumbar muscles (ranging from one to all six lumbar muscles measured). These findings objectively demonstrate the ability of a low-profile elastic exosuit to reduce back muscle fatigue during leaning, which may improve endurance for various occupations.


Assuntos
Dor Lombar/terapia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Braquetes , Eletromiografia/métodos , Teste de Esforço , Exoesqueleto Energizado , Feminino , Humanos , Contração Isométrica/fisiologia , Vértebras Lombares , Região Lombossacral , Masculino , Resistência Física/fisiologia , Adulto Jovem
3.
J Biomech ; 95: 109273, 2019 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-31431348

RESUMO

Individuals with lower-limb amputation often have difficulty walking on slopes, in part due to limitations of conventional prosthetic feet. Conventional prostheses have fixed ankle set-point angles and cannot fully replicate able-bodied ankle dynamics. Microprocessor-controlled ankles have been developed to help overcome these limitations. The objective of this study was to characterize how the slope adaptation feature of a microprocessor-controlled ankle affected individual prosthesis user gait biomechanics during sloped walking. Previous studies on similar microprocessor-controlled ankles have focused on group-level results (inter-subject mean), but did not report individual subject results. Our study builds upon prior work and provides new insight by presenting subject-specific results and investigating to what extent individual responses agree with the group-level results. We performed gait analysis on seven individuals with unilateral transtibial amputation while they walked on a 7.5° incline with a recently redesigned microprocessor-controlled ankle that adjusts ankle set-point angle to the slope. We computed gait kinematics and kinetics, and compared how users walked with vs. without this set-point adjustment. The microprocessor-controlled ankle increased minimum toe clearance for all subjects. Despite the microprocessor-controlled ankle behaving similarly for each user, we observed marked differences in individual responses. For instance, two users switched from a forefoot landing pattern with the microprocessor-controlled ankle locked at neutral angle to rearfoot landing when the microprocessor-controlled ankle adapted to the slope, while two maintained a forefoot and three maintained a rearfoot landing pattern across conditions. Changes in knee angle and moment were also subject-specific. Individual user responses were often not well represented by inter-subject mean. Although the prevailing experimental paradigm in prosthetic gait analysis studies is to focus on group-level analysis, our findings call attention to the high inter-subject variability which may necessitate alternative experimental approaches to assess prosthetic interventions.


Assuntos
Amputados , Tornozelo/fisiologia , Marcha/fisiologia , Desenho de Prótese , Caminhada/fisiologia , Adulto , Amputação Cirúrgica , Articulação do Tornozelo , Membros Artificiais , Fenômenos Biomecânicos , Feminino , , Humanos , Prótese Articular , Cinética , Joelho , Articulação do Joelho , Masculino , Microcomputadores , Pessoa de Meia-Idade
4.
IEEE Trans Biomed Eng ; 65(8): 1674-1680, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-28991732

RESUMO

GOAL: The purpose of this study was: 1) to design and fabricate a biomechanically-assistive garment which was sufficiently lightweight and low-profile to be worn underneath, or as, clothing, and then 2) to perform human subject testing to assess the ability of the garment to offload the low back muscles during leaning and lifting. METHODS: We designed a prototype garment which acts in parallel with the low back extensor muscles to reduce forces borne by the lumbar musculature. We then tested eight healthy subjects while they performed common leaning and lifting tasks with and without the garment. We recorded muscle activity, body kinematics, and assistive forces. RESULTS: The biomechanically-assistive garment offloaded the low back muscles, reducing erector spinae muscle activity by an average of 23-43% during leaning tasks, and 14-16% during lifting tasks. CONCLUSION: Experimental findings in this study support the feasibility of using biomechanically-assistive garments to reduce low back muscle loading, which may help reduce injury risks or fatigue due to high or repetitive forces. SIGNIFICANCE: Biomechanically-assistive garments may have broad societal appeal as a lightweight, unobtrusive, and cost-effective means to mitigate low back loading in daily life.


Assuntos
Eletromiografia , Coluna Vertebral/fisiologia , Dispositivos Eletrônicos Vestíveis , Suporte de Carga/fisiologia , Adulto , Fenômenos Biomecânicos/fisiologia , Eletromiografia/instrumentação , Eletromiografia/métodos , Desenho de Equipamento , Feminino , Humanos , Dor Lombar/fisiopatologia , Dor Lombar/reabilitação , Masculino , Adulto Jovem
5.
J Med Robot Res ; 2(1)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28480335

RESUMO

Lung cancer is the most deadly form of cancer in part because of the challenges associated with accessing nodules for diagnosis and therapy. Transoral access is preferred to percutaneous access since it has a lower risk of lung collapse, yet many sites are currently unreachable transorally due to limitations with current bronchoscopic instruments. Toward this end, we present a new robotic system for image-guided trans-bronchoscopic lung access. The system uses a bronchoscope to navigate in the airway and bronchial tubes to a site near the desired target, a concentric tube robot to move through the bronchial wall and aim at the target, and a bevel-tip steerable needle with magnetic tracking to maneuver through lung tissue to the target under closed-loop control. In this work, we illustrate the workflow of our system and show accurate targeting in phantom experiments. Ex vivo porcine lung experiments show that our steerable needle can be tuned to achieve appreciable curvature in lung tissue. Lastly, we present targeting results with our system using two scenarios based on patient cases. In these experiments, phantoms were created from patient-specific computed tomography information and our system was used to target the locations of suspicious nodules, illustrating the ability of our system to reach sites that are traditionally inaccessible transorally.

6.
IEEE Int Conf Robot Autom ; 2015: 5378-5383, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26157600

RESUMO

Lung cancer is the most deadly form of cancer, and survival depends on early-stage diagnosis and treatment. Transoral access is preferable to traditional between-the-ribs needle insertion because it is less invasive and reduces risk of lung collapse. Yet many sites in the peripheral zones of the lung or distant from the bronchi cannot currently be accessed transorally, due to the relatively large diameter and lack of sufficient steerablity of current instrumentation. To remedy this, we propose a new robotic system that uses a tendon-actuated device (bronchoscope) as a first stage for deploying a concentric tube robot, which itself is a vehicle through which a bevel steered needle can be introduced into the soft tissue of the lung outside the bronchi. In this paper we present the various components of the system and the workflow we envision for deploying the robot to a target using image guidance. We describe initial validation experiments in which we puncture ex vivo bronchial wall tissue and also target a nodule in a phantom with an average final tip error of 0.72 mm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA