Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Cyst Fibros ; 21(1): e28-e34, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34016557

RESUMO

BACKGROUND: Pseudomonas aeruginosa (PA) is an important respiratory pathogen for cystic fibrosis (CF) patients. Routine microbiology surveillance is time-consuming, and is best performed on expectorated sputum. As alternative, volatile organic compounds (VOCs) may be indicative of PA colonisation. In this study, we aimed to identify VOCs associated with PA in literature and perform targeted exhaled breath analysis to recognize PA positive CF patients non-invasively. METHODS: This study consisted of 1) a literature review to select VOCs of interest, and 2) a cross-sectional CF study. Definitions used: A) PA positive, PA culture at visit/chronically; B) PA free, no PA culture in ≥12 months. Exhaled VOCs were identified via quadrupole MS. The primary endpoint was the area under the receiver operating characteristics curve (AUROCC) of individual VOCs as well as combined VOCs against PA culture. RESULTS: 241 VOCs were identified in literature, of which 56 were further evaluated, and 13 could be detected in exhaled breath in our cohort. Exhaled breath of 25 pediatric and 28 adult CF patients, PA positive (n=16) and free (n=28) was available. 3/13 VOCs were significantly (p<0.05) different between PA groups in children; none were in adults. Notably, a composite model based on 5 or 1 VOC(s) showed an AUROCC of 0.86 (CI 0.71-1.0) and 0.87 (CI 0.72-1.0) for adults and children, respectively. CONCLUSIONS: Targeted VOC analysis appears to discriminate children and adults with and without PA positive cultures with clinically acceptable sensitivity values.


Assuntos
Testes Respiratórios/métodos , Fibrose Cística/microbiologia , Infecções por Pseudomonas/diagnóstico , Compostos Orgânicos Voláteis/análise , Adolescente , Adulto , Estudos Transversais , Expiração , Feminino , Humanos , Estudos Longitudinais , Masculino , Pseudomonas aeruginosa , Adulto Jovem
2.
Int J Hyg Environ Health ; 237: 113803, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34517159

RESUMO

BACKGROUND: Inflammation, oxidative stress and reduced cardiopulmonary function following exposure to ultrafine particles (UFP) from airports has been reported but the biological pathways underlying these toxicological endpoints remain to be explored. Urinary metabolomics offers a robust method by which changes in cellular pathway activity can be characterised following environmental exposures. OBJECTIVE: We assessed the impact of short-term exposures to UFP from different sources at a major airport on the human urinary metabolome. METHODS: 21 healthy, non-smoking volunteers (aged 19-27 years) were repeatedly (2-5 visits) exposed for 5h to ambient air at Amsterdam Airport Schiphol, while performing intermittent, moderate exercise. Pre- to-post exposure changes in urinary metabolite concentrations were assessed via 1H NMR spectroscopy and related to total and source-specific particle number concentrations (PNC) using linear mixed effects models. RESULTS: Total PNC at the exposure site was on average, 53,500 particles/cm3 (range 10,500-173,200) and associated with significant reductions in urinary taurine (-0.262 AU, 95% CI: -0.507 to -0.020) and dimethylamine concentrations (-0.021 AU, 95% CI: -0.040 to -0.067). Aviation UFP exposure accounted for these changes, with the reductions in taurine and dimethylamine associating with UFP produced during both aircraft landing and take-off. Significant reductions in pyroglutamate concentration were also associated with aviation UFP specifically, (-0.005 AU, 95% CI: -0.010 - <0.000) again, with contributions from both landing and take-off UFP exposure. While non-aviation UFPs induced small changes to the urinary metabolome, their effects did not significantly impact the overall response to airport UFP exposure. DISCUSSION: Following short-term exposures at a major airport, aviation-related UFP caused the greatest changes to the urinary metabolome. These were consistent with a heightened antioxidant response and altered nitric oxide synthesis. Although some of these responses could be adaptive, they appeared after short-term exposures in healthy adults. Further study is required to determine whether long-term exposures induce injurious effects.


Assuntos
Poluentes Atmosféricos , Aeroportos , Adulto , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Humanos , Metaboloma , Tamanho da Partícula , Material Particulado/análise , Material Particulado/toxicidade
3.
Analyst ; 146(14): 4605-4614, 2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34160491

RESUMO

BACKGROUND: There is a demand for a non-invasive bedside method to diagnose Acute Respiratory Distress Syndrome (ARDS). Octane was discovered and validated as the most important breath biomarker for diagnosis of ARDS using gas-chromatography and mass-spectrometry (GC-MS). However, GC-MS is unsuitable as a point-of-care (POC) test in the intensive care unit (ICU). Therefore, we determined if a newly developed POC breath test can reliably detect octane in exhaled breath of invasively ventilated ICU patients. METHODS: Two developmental steps were taken to design a POC breath test that relies on gas-chromatography using air as carrier gas with a photoionization detector. Calibration measurements were performed with a laboratory prototype in healthy subjects. Subsequently, invasively ventilated patients were included for validation and assessment of repeatability. After evolving to a POC breath test, this device was validated in a second group of invasively ventilated patients. Octane concentration was based on the area under the curve, which was extracted from the chromatogram and compared to known values from calibration measurements. RESULTS: Five healthy subjects and 53 invasively ventilated patients were included. Calibration showed a linear relation (R2 = 1.0) between the octane concentration and the quantified octane peak in the low parts per billion (ppb) range. For the POC breath test the repeatability was excellent (R2 = 0.98, ICC = 0.97 (95% CI 0.94-0.99)). CONCLUSION: This is the first study to show that a POC breath test can rapidly and reliably detect octane, with excellent repeatability, at clinically relevant levels of low ppb in exhaled breath of ventilated ICU patients. This opens possibilities for targeted exhaled breath analysis to be used as a bedside test and makes it a potential diagnostic tool for the early detection of ARDS.


Assuntos
Testes Respiratórios , Octanos , Expiração , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Sistemas Automatizados de Assistência Junto ao Leito
4.
Lancet Respir Med ; 9(9): 957-968, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34147142

RESUMO

BACKGROUND: The major complication of COVID-19 is hypoxaemic respiratory failure from capillary leak and alveolar oedema. Experimental and early clinical data suggest that the tyrosine-kinase inhibitor imatinib reverses pulmonary capillary leak. METHODS: This randomised, double-blind, placebo-controlled, clinical trial was done at 13 academic and non-academic teaching hospitals in the Netherlands. Hospitalised patients (aged ≥18 years) with COVID-19, as confirmed by an RT-PCR test for SARS-CoV-2, requiring supplemental oxygen to maintain a peripheral oxygen saturation of greater than 94% were eligible. Patients were excluded if they had severe pre-existing pulmonary disease, had pre-existing heart failure, had undergone active treatment of a haematological or non-haematological malignancy in the previous 12 months, had cytopenia, or were receiving concomitant treatment with medication known to strongly interact with imatinib. Patients were randomly assigned (1:1) to receive either oral imatinib, given as a loading dose of 800 mg on day 0 followed by 400 mg daily on days 1-9, or placebo. Randomisation was done with a computer-based clinical data management platform with variable block sizes (containing two, four, or six patients), stratified by study site. The primary outcome was time to discontinuation of mechanical ventilation and supplemental oxygen for more than 48 consecutive hours, while being alive during a 28-day period. Secondary outcomes included safety, mortality at 28 days, and the need for invasive mechanical ventilation. All efficacy and safety analyses were done in all randomised patients who had received at least one dose of study medication (modified intention-to-treat population). This study is registered with the EU Clinical Trials Register (EudraCT 2020-001236-10). FINDINGS: Between March 31, 2020, and Jan 4, 2021, 805 patients were screened, of whom 400 were eligible and randomly assigned to the imatinib group (n=204) or the placebo group (n=196). A total of 385 (96%) patients (median age 64 years [IQR 56-73]) received at least one dose of study medication and were included in the modified intention-to-treat population. Time to discontinuation of ventilation and supplemental oxygen for more than 48 h was not significantly different between the two groups (unadjusted hazard ratio [HR] 0·95 [95% CI 0·76-1·20]). At day 28, 15 (8%) of 197 patients had died in the imatinib group compared with 27 (14%) of 188 patients in the placebo group (unadjusted HR 0·51 [0·27-0·95]). After adjusting for baseline imbalances between the two groups (sex, obesity, diabetes, and cardiovascular disease) the HR for mortality was 0·52 (95% CI 0·26-1·05). The HR for mechanical ventilation in the imatinib group compared with the placebo group was 1·07 (0·63-1·80; p=0·81). The median duration of invasive mechanical ventilation was 7 days (IQR 3-13) in the imatinib group compared with 12 days (6-20) in the placebo group (p=0·0080). 91 (46%) of 197 patients in the imatinib group and 82 (44%) of 188 patients in the placebo group had at least one grade 3 or higher adverse event. The safety evaluation revealed no imatinib-associated adverse events. INTERPRETATION: The study failed to meet its primary outcome, as imatinib did not reduce the time to discontinuation of ventilation and supplemental oxygen for more than 48 consecutive hours in patients with COVID-19 requiring supplemental oxygen. The observed effects on survival (although attenuated after adjustment for baseline imbalances) and duration of mechanical ventilation suggest that imatinib might confer clinical benefit in hospitalised patients with COVID-19, but further studies are required to validate these findings. FUNDING: Amsterdam Medical Center Foundation, Nederlandse Organisatie voor Wetenschappelijk Onderzoek/ZonMW, and the European Union Innovative Medicines Initiative 2.


Assuntos
COVID-19/terapia , Mesilato de Imatinib/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Respiração Artificial/estatística & dados numéricos , Insuficiência Respiratória/terapia , Idoso , COVID-19/complicações , COVID-19/diagnóstico , COVID-19/virologia , Permeabilidade Capilar/efeitos dos fármacos , Terapia Combinada/efeitos adversos , Terapia Combinada/métodos , Método Duplo-Cego , Feminino , Humanos , Mesilato de Imatinib/efeitos adversos , Masculino , Pessoa de Meia-Idade , Países Baixos , Oxigênio/administração & dosagem , Placebos/administração & dosagem , Placebos/efeitos adversos , Inibidores de Proteínas Quinases/efeitos adversos , Insuficiência Respiratória/diagnóstico , Insuficiência Respiratória/virologia , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
5.
Sensors (Basel) ; 21(7)2021 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-33916542

RESUMO

Environmental factors, such as air pollution, can affect the composition of exhaled breath, and should be well understood before biomarkers in exhaled breath can be used in clinical practice. Our objective was to investigate whether short-term exposures to air pollution can be detected in the exhaled breath profile of healthy adults. In this study, 20 healthy young adults were exposed 2-4 times to the ambient air near a major airport and two highways. Before and after each 5 h exposure, exhaled breath was analyzed using an electronic nose (eNose) consisting of seven different cross-reactive metal-oxide sensors. The discrimination between pre and post-exposure was investigated with multilevel partial least square discriminant analysis (PLSDA), followed by linear discriminant and receiver operating characteristic (ROC) analysis, for all data (71 visits), and for a training (51 visits) and validation set (20 visits). Using all eNose measurements and the training set, discrimination between pre and post-exposure resulted in an area under the ROC curve of 0.83 (95% CI = 0.76-0.89) and 0.84 (95% CI = 0.75-0.92), whereas it decreased to 0.66 (95% CI = 0.48-0.84) in the validation set. Short-term exposure to high levels of air pollution potentially influences the exhaled breath profiles of healthy adults, however, the effects may be minimal for regular daily exposures.


Assuntos
Poluição do Ar , Testes Respiratórios , Biomarcadores , Nariz Eletrônico , Expiração , Humanos , Adulto Jovem
6.
Allergy ; 76(8): 2488-2499, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33704785

RESUMO

BACKGROUND: Early detection/prediction of flare-ups in asthma, commonly triggered by viruses, would enable timely treatment. Previous studies on exhaled breath analysis by electronic nose (eNose) technology could discriminate between stable and unstable episodes of asthma, using single/few time-points. To investigate its monitoring properties during these episodes, we examined day-to-day fluctuations in exhaled breath profiles, before and after a rhinovirus-16 (RV16) challenge, in healthy and asthmatic adults. METHODS: In this proof-of-concept study, 12 atopic asthmatic and 12 non-atopic healthy adults were prospectively followed thrice weekly, 60 days before, and 30 days after a RV16 challenge. Exhaled breath profiles were detected using an eNose, consisting of 7 different sensors. Per sensor, individual means were calculated using pre-challenge visits. Absolute deviations (|%|) from this baseline were derived for all visits. Within-group comparisons were tested with Mann-Whitney U tests and receiver operating characteristic (ROC) analysis. Finally, Spearman's correlations between the total change in eNose deviations and fractional exhaled nitric oxide (FeNO), cold-like symptoms, and pro-inflammatory cytokines were examined. RESULTS: Both groups had significantly increased eNose fluctuations post-challenge, which in asthma started 1 day post-challenge, before the onset of symptoms. Discrimination between pre- and post-challenge reached an area under the ROC curve of 0.82 (95% CI = 0.65-0.99) in healthy and 0.97 (95% CI = 0.91-1.00) in asthmatic adults. The total change in eNose deviations moderately correlated with IL-8 and TNFα (ρ ≈ .50-0.60) in asthmatics. CONCLUSION: Electronic nose fluctuations rapidly increase after a RV16 challenge, with distinct differences between healthy and asthmatic adults, suggesting that this technology could be useful in monitoring virus-driven unstable episodes in asthma.


Assuntos
Asma , Rhinovirus , Adulto , Asma/diagnóstico , Testes Respiratórios , Nariz Eletrônico , Expiração , Humanos , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA