Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Commun ; 15(1): 1076, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38316785

RESUMO

Recently, we have shown that after partial hepatectomy (PHx), an increased hepatic blood flow initiates liver growth in mice by vasodilation and mechanically-triggered release of angiocrine signals. Here, we use mass spectrometry to identify a mechanically-induced angiocrine signal in human hepatic endothelial cells, that is, myeloid-derived growth factor (MYDGF). We show that it induces proliferation and promotes survival of primary human hepatocytes derived from different donors in two-dimensional cell culture, via activation of mitogen-activated protein kinase (MAPK) and signal transducer and activator of transcription 3 (STAT3). MYDGF also enhances proliferation of human hepatocytes in three-dimensional organoids. In vivo, genetic deletion of MYDGF decreases hepatocyte proliferation in the regenerating mouse liver after PHx; conversely, adeno-associated viral delivery of MYDGF increases hepatocyte proliferation and MAPK signaling after PHx. We conclude that MYDGF represents a mechanically-induced angiocrine signal and that it triggers growth of, and provides protection to, primary mouse and human hepatocytes.


Assuntos
Células Endoteliais , Interleucinas , Regeneração Hepática , Animais , Humanos , Camundongos , Proliferação de Células , Células Endoteliais/metabolismo , Hepatectomia , Hepatócitos/metabolismo , Fígado/metabolismo , Regeneração Hepática/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Interleucinas/metabolismo
2.
Horm Metab Res ; 56(3): 223-234, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38168730

RESUMO

For treatment of type 1 diabetes mellitus, a combination of immune-based interventions and medication to promote beta-cell survival and proliferation has been proposed. Dextromethorphan (DXM) is an N-methyl-D-aspartate receptor antagonist with a good safety profile, and to date, preclinical and clinical evidence for blood glucose-lowering and islet-cell-protective effects of DXM have only been provided for animals and individuals with type 2 diabetes mellitus. Here, we assessed the potential anti-diabetic effects of DXM in the non-obese diabetic mouse model of type 1 diabetes. More specifically, we showed that DXM treatment led to five-fold higher numbers of pancreatic islets and more than two-fold larger alpha- and beta-cell areas compared to untreated mice. Further, DXM treatment improved glucose homeostasis and reduced diabetes incidence by 50%. Our data highlight DXM as a novel candidate for adjunct treatment of preclinical or recent-onset type 1 diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Camundongos , Animais , Camundongos Endogâmicos NOD , Dextrometorfano/farmacologia , Dextrometorfano/uso terapêutico , Receptores de N-Metil-D-Aspartato/uso terapêutico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Insulina , Glicemia , Homeostase
3.
Mol Metab ; 75: 101775, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37451343

RESUMO

OBJECTIVE: Dextromethorphan (DXM) is a commonly used antitussive medication with positive effects in people with type 2 diabetes mellitus, since it increases glucose tolerance and protects pancreatic islets from cell death. However, its use as an antidiabetic medication is limited due to its central nervous side effects and potential use as a recreational drug. Therefore, we recently modified DXM chemically to reduce its blood-brain barrier (BBB) penetration and central side effects. However, our best compound interacted with the cardiac potassium channel hERG (human ether-à-go-go-related gene product) and the µ-opioid receptor (MOR). Thus, the goal of this study was to reduce the interaction of our compound with these targets, while maintaining its beneficial properties. METHODS: Receptor and channel binding assays were conducted to evaluate the drug safety of our DXM derivative. Pancreatic islets were used to investigate the effect of the compound on insulin secretion and islet cell survival. Via liquor collection from the brain and a behavioral assay, we analyzed the BBB permeability. By performing intraperitoneal and oral glucose tolerance tests as well as pharmacokinetic analyses, the antidiabetic potential and elimination half-life were investigated, respectively. To analyze the islet cell-protective effect, we used fluorescence microscopy as well as flow cytometric analyses. RESULTS: Here, we report the design and synthesis of an optimized, orally available BBB-impermeable DXM derivative with lesser binding to hERG and MOR than previous ones. We also show that the new compound substantially enhances glucose-stimulated insulin secretion (GSIS) from mouse and human islets and glucose tolerance in mice as well as protects pancreatic islets from cell death induced by reactive oxygen species and that it amplifies the effects of tirzepatide on GSIS and islet cell viability. CONCLUSIONS: We succeeded to design and synthesize a novel morphinan derivative that is BBB-impermeable, glucose-lowering and islet cell-protective and has good drug safety despite its morphinan and imidazole structures.


Assuntos
Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , Morfinanos , Camundongos , Humanos , Animais , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Morfinanos/metabolismo , Morfinanos/farmacologia , Ilhotas Pancreáticas/metabolismo , Glucose/metabolismo , Hipoglicemiantes/farmacologia , Estresse Oxidativo
4.
Cell Rep ; 42(6): 112615, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37294632

RESUMO

Type 2 diabetes is characterized by insulin hypersecretion followed by reduced glucose-stimulated insulin secretion (GSIS). Here we show that acute stimulation of pancreatic islets with the insulin secretagogue dextrorphan (DXO) or glibenclamide enhances GSIS, whereas chronic treatment with high concentrations of these drugs reduce GSIS but protect islets from cell death. Bulk RNA sequencing of islets shows increased expression of genes for serine-linked mitochondrial one-carbon metabolism (OCM) after chronic, but not acute, stimulation. In chronically stimulated islets, more glucose is metabolized to serine than to citrate, and the mitochondrial ATP/ADP ratio decreases, whereas the NADPH/NADP+ ratio increases. Activating transcription factor-4 (Atf4) is required and sufficient to activate serine-linked mitochondrial OCM genes in islets, with gain- and loss-of-function experiments showing that Atf4 reduces GSIS and is required, but not sufficient, for full DXO-mediated islet protection. In sum, we identify a reversible metabolic pathway that provides islet protection at the expense of secretory function.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Ilhotas Pancreáticas , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ilhotas Pancreáticas/metabolismo , Insulina/metabolismo , Glucose/metabolismo , Carbono/metabolismo , Células Secretoras de Insulina/metabolismo
6.
Front Cardiovasc Med ; 10: 1171831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37252113

RESUMO

Introduction: Platelet activation and thrombus formation is crucial for hemostasis, but also trigger arterial thrombosis. Calcium mobilization plays an important role in platelet activation, because many cellular processes depend on the level of intracellular Ca2+ ([Ca2+](i)), such as integrin activation, degranulation, cytoskeletal reorganization. Different modulators of Ca2+ signaling have been implied, such as STIM1, Orai1, CyPA, SGK1, etc. Also, the N-methyl-D-aspartate receptor (NMDAR) was identified to contribute to Ca2+ signaling in platelets. However, the role of the NMDAR in thrombus formation is not well defined. Methods: In vitro and in vivo analysis of platelet-specific NMDAR knock-out mice. Results: In this study, we analyzed Grin1fl/fl-Pf4-Cre+ mice with a platelet-specific knock-out of the essential GluN1 subunit of the NMDAR. We found reduced store-operated Ca2+ entry (SOCE), but unaltered store release in GluN1-deficient platelets. Defective SOCE resulted in reduced Src and PKC substrate phosphorylation following stimulation of glycoprotein (GP)VI or the thrombin receptor PAR4 followed by decreased integrin activation but unaltered degranulation. Consequently, thrombus formation on collagen under flow conditions was reduced ex vivo, and Grin1fl/fl-Pf4-Cre+ mice were protected against arterial thrombosis. Results from human platelets treated with the NMDAR antagonist MK-801 revealed a crucial role of the NMDAR in integrin activation and Ca2+ homeostasis in human platelets as well. Conclusion: NMDAR signaling is important for SOCE in platelets and contributes to platelet activation and arterial thrombosis. Thus, the NMDAR represents a novel target for anti-platelet therapy in cardiovascular disease (CVD).

7.
Nat Cell Biol ; 25(1): 20-29, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36543979

RESUMO

Impaired proinsulin-to-insulin processing in pancreatic ß-cells is a key defective step in both type 1 diabetes and type 2 diabetes (T2D) (refs. 1,2), but the mechanisms involved remain to be defined. Altered metabolism of sphingolipids (SLs) has been linked to development of obesity, type 1 diabetes and T2D (refs. 3-8); nonetheless, the role of specific SL species in ß-cell function and demise is unclear. Here we define the lipid signature of T2D-associated ß-cell failure, including an imbalance of specific very-long-chain SLs and long-chain SLs. ß-cell-specific ablation of CerS2, the enzyme necessary for generation of very-long-chain SLs, selectively reduces insulin content, impairs insulin secretion and disturbs systemic glucose tolerance in multiple complementary models. In contrast, ablation of long-chain-SL-synthesizing enzymes has no effect on insulin content. By quantitatively defining the SL-protein interactome, we reveal that CerS2 ablation affects SL binding to several endoplasmic reticulum-Golgi transport proteins, including Tmed2, which we define as an endogenous regulator of the essential proinsulin processing enzyme Pcsk1. Our study uncovers roles for specific SL subtypes and SL-binding proteins in ß-cell function and T2D-associated ß-cell failure.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Proinsulina/genética , Proinsulina/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Esfingolipídeos/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Insulina/metabolismo , Homeostase , Proteínas de Transporte/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo
8.
Mol Metab ; 67: 101650, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36470401

RESUMO

OBJECTIVE: Beta cell dysfunction and death are critical steps in the development of both type 1 and type 2 diabetes (T1D and T2D), but the underlying mechanisms are incompletely understood. Activation of the essential tumor suppressor and transcription factor P53 (also known as TP53 and Trp53 in mice) was linked to beta cell death in vitro and has been reported in several diabetes mouse models and beta cells of humans with T2D. In this article, we set out to determine the beta cell specific role of P53 in beta cell dysfunction, cell death and development of diabetes in vivo. METHODS: We generated beta cell specific P53 knockout (P53BKO) mice and used complementary genetic, dietary and pharmacological models of glucose intolerance, beta cell dysfunction and diabetes development to evaluate the functional role of P53 selectively in beta cells. We further analyzed the effect of P53 ablation on beta cell survival in isolated pancreatic islets exposed to diabetogenic stress inducers ex vivo by flow cytometry. RESULTS: Beta cell specific ablation of P53/Trp53 failed to ameliorate glucose tolerance, insulin secretion or to increase beta cell numbers in genetic, dietary and pharmacological models of diabetes. Additionally, loss of P53 in beta cells did not protect against streptozotocin (STZ) induced hyperglycemia and beta cell death, although STZ-induced activation of classical pro-apoptotic P53 target genes was significantly reduced in P53BKO mice. In contrast, Olaparib mediated PARP1 inhibition protected against acute ex vivo STZ-induced beta cell death and islet destruction. CONCLUSIONS: Our study reveals that ablation of P53 specifically in beta cells is unexpectedly unable to attenuate beta cell failure and death in vivo and ex vivo. While during development and progression of diabetes, P53 and P53-regulated pathways are activated, our study suggests that P53 signaling is not essential for loss of beta cells or beta cell dysfunction. P53 in other cell types and organs may predominantly regulate systemic glucose homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Humanos , Camundongos , Animais , Células Secretoras de Insulina/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Insulina/metabolismo , Glucose/metabolismo
9.
Handb Exp Pharmacol ; 274: 439-465, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34114119

RESUMO

Beta-cell dysfunction and beta-cell death are critical events in the development of type 2 diabetes mellitus (T2DM). Therefore, the goals of modern T2DM management have shifted from merely restoring normoglycemia to maintaining or regenerating beta-cell mass and function. In this review we summarize current and novel approaches to achieve these goals, ranging from lifestyle interventions to N-methyl-D-aspartate receptor (NMDAR) antagonism, and discuss the mechanisms underlying their effects on beta-cell physiology and glycemic control. Notably, timely intervention seems critical, but not always strictly required, to maximize the effect of any approach on beta-cell recovery and disease progression. Conventional antidiabetic medications are not disease-modifying in the sense that the disease does not progress or reoccur while on treatment or thereafter. More invasive approaches, such as bariatric surgery, are highly effective in restoring normoglycemia, but are reserved for a rather small proportion of obese individuals and sometimes associated with serious adverse events. Finally, we recapitulate the broad range of effects mediated by peripheral NMDARs and discuss recent evidence on the potential of NMDAR antagonists to be developed as a novel class of antidiabetic drugs. In the future, a more refined assessment of disease risk or disease subtype might enable more targeted therapies to prevent or treat diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Insulina/metabolismo , Células Secretoras de Insulina/fisiologia , Receptores de N-Metil-D-Aspartato
10.
Cell Chem Biol ; 28(10): 1474-1488.e7, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34118188

RESUMO

Dextromethorphan (DXM) acts as cough suppressant via its central action. Cell-protective effects of this drug have been reported in peripheral tissues, making DXM potentially useful for treatment of several common human diseases, such as type 2 diabetes mellitus (T2DM). Pancreatic islets are among the peripheral tissues that positively respond to DXM, and anti-diabetic effects of DXM were observed in two placebo-controlled, randomized clinical trials in humans with T2DM. Since these effects were associated with central side effects, we here developed chemical derivatives of DXM that pass the blood-brain barrier to a significantly lower extent than the original drug. We show that basic nitrogen-containing residues block central adverse events of DXM without reducing its anti-diabetic effects, including the protection of human pancreatic islets from cell death. These results show how to chemically modify DXM, and possibly other morphinans, as to exclude central side effects, while targeting peripheral tissues, such as pancreatic islets.


Assuntos
Glicemia/análise , Dextrometorfano/farmacologia , Hipoglicemiantes/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Cálcio/metabolismo , Dextrometorfano/análogos & derivados , Dextrometorfano/metabolismo , Dextrometorfano/uso terapêutico , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Desenho de Fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/metabolismo , Hipoglicemiantes/uso terapêutico , Insulina/sangue , Insulina/metabolismo , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Potenciais da Membrana/efeitos dos fármacos , Camundongos Endogâmicos C57BL
11.
Biol Chem ; 402(9): 1009-1019, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-33908220

RESUMO

Recently, we have shown that an enhanced blood flow through the liver triggers hepatocyte proliferation and thereby liver growth. In this review, we first explain the literature on hepatic blood flow and its changes after partial hepatectomy (PHx), before we present the different steps of liver regeneration that take place right after the initial hemodynamic changes induced by PHx. Those parts of the molecular mechanisms governing liver regeneration, which are directly associated with the hepatic vascular system, are subsequently reviewed. These include ß1 integrin-dependent mechanotransduction in liver sinusoidal endothelial cells (LSECs), triggering mechanically-induced activation of the vascular endothelial growth factor receptor-3 (VEGFR3) and matrix metalloproteinase-9 (MMP9) as well as release of growth-promoting angiocrine signals. Finally, we speculate how advanced age and obesity negatively affect the hepatic vasculature and thus liver regeneration and health, and we conclude our review with some recent technical progress in the clinic that employs liver perfusion. In sum, the mechano-elastic properties and alterations of the hepatic vasculature are key to better understand and influence liver health, regeneration, and disease.


Assuntos
Regeneração Hepática , Animais , Células Endoteliais , Mecanotransdução Celular , Camundongos , Vasodilatação
12.
Thromb Haemost ; 121(6): 741-754, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33469904

RESUMO

BACKGROUND: Short episodes of myocardial ischemia can protect from myocardial infarction. However, the role of endothelial ß1 integrin in these cardioprotective ischemic events is largely unknown. OBJECTIVE: In this study we investigated whether endothelial ß1 integrin is required for cardiac adaptation to ischemia and protection from myocardial infarction. METHODS: Here we introduced transient and permanent left anterior descending artery (LAD) occlusions in mice. We inhibited ß1 integrin by intravenous injection of function-blocking antibodies and tamoxifen-induced endothelial cell (EC)-specific deletion of Itgb1. Furthermore, human ITGB1 was silenced in primary human coronary artery ECs using small interfering RNA. We analyzed the numbers of proliferating ECs and arterioles by immunohistochemistry, determined infarct size by magnetic resonance imaging (MRI) and triphenyl tetrazolium chloride staining, and analyzed cardiac function by MRI and echocardiography. RESULTS: Transient LAD occlusions were found to increase EC proliferation and arteriole formation in the entire myocardium. These effects required ß1 integrin on ECs, except for arteriole formation in the ischemic part of the myocardium. Furthermore, this integrin subunit was also relevant for basal and mechanically induced proliferation of human coronary artery ECs. Notably, ß1 integrin was needed for cardioprotection induced by transient LAD occlusions, and the absence of endothelial ß1 integrin resulted in impaired growth of blood vessels into the infarcted myocardium and reduced cardiac function after permanent LAD occlusion. CONCLUSION: We showed that endothelial ß1 integrin is required for adaptation of the heart to cardiac ischemia and protection from myocardial infarction.


Assuntos
Vasos Coronários/metabolismo , Células Endoteliais/metabolismo , Integrina beta1/metabolismo , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/prevenção & controle , Animais , Proliferação de Células , Vasos Coronários/patologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Humanos , Integrina beta1/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Neovascularização Fisiológica , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Transdução de Sinais , Adulto Jovem
13.
J Mol Biol ; 432(5): 1407-1418, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31711959

RESUMO

The islets of Langerhans or pancreatic islets are pivotal in the control of blood glucose and are complex microorgans embedded within the larger volume of the exocrine pancreas. Humans can have ~3.2 million islets [1] which, to our current knowledge, function in a similar manner to sense circulating blood glucose levels and respond with the secretion of a mix of different hormones that act to maintain glucose concentrations around a specific set point [2]. At a cellular level, the control of hormone secretion by glucose and other secretagogues is well-understood [3]. The key signal cascades have been identified and many details of the secretory process are known. However, if we shift focus from single cells and consider cells within intact islets, we do not have a comprehensive model as to how the islet environment influences cell function and how the islets work as a whole. This is important because there is overwhelming evidence that the structure and function of the individual endocrine cells are dramatically affected by the islet environment [4,5]. Uncovering the influence of this islet niche might drive future progress in treatments for Type 2 diabetes [6] and cell replacement therapies for Type 1 diabetes [7]. In this review, we focus on the insulin secreting beta cells and their interactions with the immediate environment that surrounds them including endocrine-endocrine interactions and contacts with capillaries.


Assuntos
Células Secretoras de Insulina , Ilhotas Pancreáticas/citologia , Animais , Capilares , Comunicação Celular , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Matriz Extracelular/fisiologia , Glucose/metabolismo , Humanos , Secreção de Insulina/fisiologia , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Transdução de Sinais
14.
Sci Rep ; 9(1): 16931, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729436

RESUMO

An acute increase in blood flow triggers flow-mediated dilation (FMD), which is mainly mediated by endothelial nitric oxide synthase (eNOS). A long-term increase in blood flow chronically enlarges the arterial lumen, a process called arteriogenesis. In several common human diseases, these processes are disrupted for as yet unknown reasons. Here, we asked whether ß1 integrin, a mechanosensory protein in endothelial cells, is required for FMD and arteriogenesis in the ischemic hindlimb. Permanent ligation of the femoral artery in C57BL/6 J mice enlarged pre-existing collateral arteries and increased numbers of arterioles in the thigh. In the lower leg, the numbers of capillaries increased. Notably, injection of ß1 integrin-blocking antibody or tamoxifen-induced endothelial cell-specific deletion of the gene for ß1 integrin (Itgb1) inhibited both arteriogenesis and angiogenesis. Using high frequency ultrasound, we demonstrated that ß1 integrin-blocking antibody or endothelial cell-specific depletion of ß1 integrin attenuated FMD of the femoral artery, and blocking of ß1 integrin function did not further decrease FMD in eNOS-deficient mice. Our data suggest that endothelial ß1 integrin is required for both acute and chronic widening of the arterial lumen in response to hindlimb ischemia, potentially via functional interaction with eNOS.


Assuntos
Circulação Colateral/genética , Endotélio Vascular/metabolismo , Membro Posterior/irrigação sanguínea , Integrina beta1/genética , Isquemia/etiologia , Isquemia/metabolismo , Neovascularização Fisiológica/genética , Vasodilatação , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Técnicas de Inativação de Genes , Membro Posterior/metabolismo , Membro Posterior/patologia , Humanos , Integrina beta1/metabolismo , Isquemia/patologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Ligação Proteica
15.
EMBO J ; 38(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30518533

RESUMO

Vascular endothelial growth factor receptor-3 (VEGFR3) signalling promotes lymphangiogenesis. While there are many reported mechanisms of VEGFR3 activation, there is little understanding of how VEGFR3 signalling is attenuated to prevent lymphatic vascular overgrowth and ensure proper lymph vessel development. Here, we show that endothelial cell-specific depletion of integrin-linked kinase (ILK) in mouse embryos hyper-activates VEGFR3 signalling and leads to overgrowth of the jugular lymph sacs/primordial thoracic ducts, oedema and embryonic lethality. Lymphatic endothelial cell (LEC)-specific deletion of Ilk in adult mice initiates lymphatic vascular expansion in different organs, including cornea, skin and myocardium. Knockdown of ILK in human LECs triggers VEGFR3 tyrosine phosphorylation and proliferation. ILK is further found to impede interactions between VEGFR3 and ß1 integrin in vitro and in vivo, and endothelial cell-specific deletion of an Itgb1 allele rescues the excessive lymphatic vascular growth observed upon ILK depletion. Finally, mechanical stimulation disrupts the assembly of ILK and ß1 integrin, releasing the integrin to enable its interaction with VEGFR3. Our data suggest that ILK facilitates mechanically regulated VEGFR3 signalling via controlling its interaction with ß1 integrin and thus ensures proper development of lymphatic vessels.


Assuntos
Integrina beta1/metabolismo , Linfangiogênese , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Humanos , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Camundongos , Fosforilação , Transdução de Sinais
16.
Nature ; 562(7725): 128-132, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30258227

RESUMO

Angiocrine signals derived from endothelial cells are an important component of intercellular communication and have a key role in organ growth, regeneration and disease1-4. These signals have been identified and studied in multiple organs, including the liver, pancreas, lung, heart, bone, bone marrow, central nervous system, retina and some cancers1-4. Here we use the developing liver as a model organ to study angiocrine signals5,6, and show that the growth rate of the liver correlates both spatially and temporally with blood perfusion to this organ. By manipulating blood flow through the liver vasculature, we demonstrate that vessel perfusion activates ß1 integrin and vascular endothelial growth factor receptor 3 (VEGFR3). Notably, both ß1 integrin and VEGFR3 are strictly required for normal production of hepatocyte growth factor, survival of hepatocytes and liver growth. Ex vivo perfusion of adult mouse liver and in vitro mechanical stretching of human hepatic endothelial cells illustrate that mechanotransduction alone is sufficient to turn on angiocrine signals. When the endothelial cells are mechanically stretched, angiocrine signals trigger in vitro proliferation and survival of primary human hepatocytes. Our findings uncover a signalling pathway in vascular endothelial cells that translates blood perfusion and mechanotransduction into organ growth and maintenance.


Assuntos
Comunicação Autócrina , Integrina beta1/metabolismo , Fígado/crescimento & desenvolvimento , Fígado/fisiologia , Mecanotransdução Celular/fisiologia , Transdução de Sinais , Animais , Células Cultivadas , Células Endoteliais/fisiologia , Feminino , Fator de Crescimento de Hepatócito/metabolismo , Hepatócitos/citologia , Hepatócitos/fisiologia , Humanos , Fígado/irrigação sanguínea , Fígado/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Endocrinology ; 159(4): 1748-1761, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481597

RESUMO

The Rab guanosine triphosphatase-activating protein (RabGAP) TBC1D1 has been shown to be a key regulator of glucose and lipid metabolism in skeletal muscle. Its function in pancreatic islets, however, is not yet fully understood. Here, we aimed to clarify the specific impact of TBC1D1 on insulin secretion and substrate use in pancreatic islets. We analyzed the dynamics of glucose-stimulated insulin secretion (GSIS) and lipid metabolism in isolated islets from Tbc1d1-deficient (D1KO) mice. To further investigate the underlying cellular mechanisms, we conducted pharmacological studies in these islets. In addition, we determined morphology and number of both pancreatic islets and insulin vesicles in ß-cells using light and transmission electron microscopy. Isolated pancreatic islets from D1KO mice exhibited substantially increased GSIS compared with wild-type (WT) controls. This was attributed to both enhanced first and second phase of insulin secretion, and this enhanced secretion persisted during repetitive glucose stimuli. Studies with sulfonylureas or KCl in isolated islets demonstrated that TBC1D1 exerts its function via a signaling pathway at the level of membrane depolarization. In line, ultrastructural analysis of isolated pancreatic islets revealed both higher insulin-granule density and number of docked granules in ß-cells from D1KO mice compared with WT controls. Like in skeletal muscle, lipid use in isolated islets was enhanced upon D1KO, presumably as a result of a higher mitochondrial fission rate and/or higher mitochondrial activity. Our results clearly demonstrate a dual role of TBC1D1 in controlling substrate metabolism of the pancreatic islet.


Assuntos
Ácidos Graxos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/fisiologia , Metabolismo dos Lipídeos/genética , Animais , Proteínas Ativadoras de GTPase/genética , Células Secretoras de Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Knockout
18.
Adv Pharmacol ; 81: 155-208, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310798

RESUMO

The blood and lymphatic vasculatures are hierarchical networks of vessels, which constantly transport fluids and, therefore, are exposed to a variety of mechanical forces. Considering the role of mechanotransduction is key for fully understanding how these vascular systems develop, function, and how vascular pathologies evolve. During embryonic development, for example, initiation of blood flow is essential for early vascular remodeling, and increased interstitial fluid pressure as well as initiation of lymph flow is needed for proper development and maturation of the lymphatic vasculature. In this review, we introduce specific mechanical forces that affect both the blood and lymphatic vasculatures, including longitudinal and circumferential stretch, as well as shear stress. In addition, we provide an overview of the role of mechanotransduction during atherosclerosis and secondary lymphedema, which both trigger tissue fibrosis.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/patologia , Linfangiogênese , Vasos Linfáticos/patologia , Mecanotransdução Celular , Animais , Fenômenos Biomecânicos , Humanos , Estresse Mecânico
20.
Inflamm Regen ; 37: 2, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29259701

RESUMO

BACKGROUND: Pericytes, surrounding the endothelium, fulfill diverse functions that are crucial for vascular homeostasis. The loss of pericytes is associated with pathologies, such as diabetic retinopathy and Alzheimer's disease. Thus, there exists a need for an experimental system that combines pharmacologic manipulation and quantification of pericyte coverage during sprouting angiogenesis. Here, we describe an in vitro angiogenesis assay that develops lumenized vascular sprouts composed of endothelial cells enveloped by pericytes, with the additional ability to comparatively screen the effect of multiple small molecules simultaneously. For automated analysis, we also present an ImageJ plugin tool we developed to quantify sprout morphology and pericyte coverage. METHODS: Human umbilical vein endothelial cells and human brain vascular pericytes were coated on microcarrier beads and embedded in fibrin gels in a 96-well plate to form lumenized vascular sprouts. After treatment with pharmacologic compounds, sprouts were fixed, stained, and imaged via optical z-sections over the area of each well. The maximum intensity projections of these images were stitched together to form montages of the wells, and those montages were processed and analyzed. RESULTS: Vascular sprouts formed within 4-12 days and contained a patent lumen surrounded by a layer of human endothelial cells and pericytes. Using our workflow and image analysis, pericyte coverage after treatment with various compounds was successfully quantified. CONCLUSIONS: Here we present a robust in vitro assay using primary human vascular cells that allows researchers to analyze the effects of multiple compounds on sprouting angiogenesis and pericyte coverage. Our ImageJ plugin offers automated evaluation across multiple different vascular parameters, such as sprout length, cell density, branch points, and pericyte coverage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA