Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Physiol Genomics ; 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38766755

RESUMO

INTRODUCTION: Both sleep loss and exercise regulate gene expression in skeletal muscle, yet little is known about how the interaction of these stressors affects the muscle transcriptome. The aim of this study was to investigate the effect of nine nights of sleep restriction, with repeated resistance exercise (REx) sessions, on the skeletal muscle transcriptome of young, trained females. METHODS: Ten healthy females aged 18-35 years undertook a randomised cross-over study of nine nights' sleep restriction (SR; 5-h time in bed) and normal sleep (NS; ≥7 h time in bed) with a minimum 6-week washout. Participants completed four REx sessions per condition (day 3, 5, 7 and 9). Muscle biopsies were collected both pre- and post-REx on days 3 and 9. Gene and protein expression were assessed by RNA sequencing and Western Blot, respectively. RESULTS: Three or nine nights of sleep restriction had no effect on the muscle transcriptome independently of exercise. However, close to 3000 transcripts were differentially regulated (FDR < 0.05) 48 h post the completion of three resistance exercise sessions in both NS and SR conditions. Only 39% of downregulated and 18% of upregulated genes were common between both conditions, indicating a moderating effect of sleep restriction on the response to exercise. CONCLUSION: Sleep restriction and resistance exercise interacted to alter the enrichment of skeletal muscle transcriptomic pathways in young, resistance-trained females. Performing exercise when sleep restricted may not provide the same adaptive response for individuals as if they were fully rested.

2.
Eur J Appl Physiol ; 124(6): 1719-1732, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38189826

RESUMO

PURPOSE: This study aimed to determine the inter-session reliability of quadriceps neuromuscular function measurements in healthy young and older females. METHODS: Twenty-six females aged 19-74 years completed two identical experimental sessions on different days. Quadriceps neuromuscular function measurements included isometric maximal voluntary force, high- and low-frequency twitch force, voluntary and evoked (H-reflex, M-wave) electromyography (EMG), and estimated maximal torque, velocity and power derived from torque-velocity relationships. Intra-class correlation coefficients (ICCs), coefficients of variation (CoV) and Bland-Altman plots assessed inter-session reliability. The effect of age on reliability was assessed by linear regression. RESULTS: Excellent reliability (ICC > 0.8) was shown for all voluntary and evoked mechanical outcomes. Vastus lateralis EMG outcomes showed excellent reliability (ICC > 0.8) with CoVs < 12%, which were better than those of vastus medialis and rectus femoris. Age was not associated with reliability for 27/28 outcomes (P > 0.05). CONCLUSION: Excellent reliability of voluntary and evoked force and vastus lateralis EMG outcomes measured in healthy females can be attained in one experimental session, irrespective of age. Female neuromuscular function can be accurately assessed across the lifespan with minimal inconvenience, increasing feasibility for future research. The random error should however be considered when quantifying age-related differences in neuromuscular function.


Assuntos
Músculo Quadríceps , Humanos , Feminino , Pessoa de Meia-Idade , Adulto , Músculo Quadríceps/fisiologia , Idoso , Reprodutibilidade dos Testes , Eletromiografia/métodos , Torque , Contração Isométrica/fisiologia , Adulto Jovem , Envelhecimento/fisiologia , Força Muscular/fisiologia
3.
BMC Biol ; 21(1): 273, 2023 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012706

RESUMO

BACKGROUND: Sex differences in microRNA (miRNA) expression profiles have been found across multiple tissues. Skeletal muscle is one of the most sex-biased tissues of the body. MiRNAs are necessary for development and have regulatory roles in determining skeletal muscle phenotype and have important roles in the response to exercise in muscle. Yet there is limited research into the role and regulation of miRNAs in the skeletal muscle at baseline and in response to exercise, a well-known modulator of miRNA expression. The aim of this study was to investigate the effect of sex on miRNA expression in the skeletal muscle at baseline and after an acute bout of high-intensity interval exercise. A total of 758 miRNAs were measured using Taqman®miRNA arrays in the skeletal muscle of 42 healthy participants from the Gene SMART study (23 males and 19 females of comparable fitness levels and aged 18-45 years), of which 308 were detected. MiRNAs that differed by sex at baseline and whose change in expression following high-intensity interval exercise differed between the sexes were identified using mixed linear models adjusted for BMI and Wpeak. We performed in silico analyses to identify the putative gene targets of the exercise-induced, sex-specific miRNAs and overrepresentation analyses to identify enriched biological pathways. We performed functional assays by overexpressing two sex-biased miRNAs in human primary muscle cells derived from male and female donors to understand their downstream effects on the transcriptome. RESULTS: At baseline, 148 miRNAs were differentially expressed in the skeletal muscle between the sexes. Interaction analysis identified 111 miRNAs whose response to an acute bout of high-intensity interval exercise differed between the sexes. Sex-biased miRNA gene targets were enriched for muscle-related processes including proliferation and differentiation of muscle cells and numerous metabolic pathways, suggesting that miRNAs participate in programming sex differences in skeletal muscle function. Overexpression of sex-biased miRNA-30a and miRNA-30c resulted in profound changes in gene expression profiles that were specific to the sex of the cell donor in human primary skeletal muscle cells. CONCLUSIONS: We uncovered sex differences in the expression levels of muscle miRNAs at baseline and in response to acute high-intensity interval exercise. These miRNAs target regulatory pathways essential to skeletal muscle development and metabolism. Our findings highlight that miRNAs play an important role in programming sex differences in the skeletal muscle phenotype.


Assuntos
MicroRNAs , Humanos , Feminino , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Transcriptoma , Músculo Esquelético/metabolismo , Diferenciação Celular , Caracteres Sexuais
4.
Biol Sex Differ ; 14(1): 56, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37670389

RESUMO

BACKGROUND: Exercise training elicits changes in muscle physiology, epigenomics, transcriptomics, and proteomics, with males and females exhibiting differing physiological responses to exercise training. However, the molecular mechanisms contributing to the differing adaptations between the sexes are poorly understood. METHODS: We performed a meta-analysis for sex differences in skeletal muscle DNA methylation following an endurance training intervention (Gene SMART cohort and E-MTAB-11282 cohort). We investigated for sex differences in the skeletal muscle proteome following an endurance training intervention (Gene SMART cohort). Lastly, we investigated whether the methylome and proteome are associated with baseline cardiorespiratory fitness (maximal oxygen consumption; VO2max) in a sex-specific manner. RESULTS: Here, we investigated for the first time, DNA methylome and proteome sex differences in response to exercise training in human skeletal muscle (n = 78; 50 males, 28 females). We identified 92 DNA methylation sites (CpGs) associated with exercise training; however, no CpGs changed in a sex-dependent manner. In contrast, we identified 189 proteins that are differentially expressed between the sexes following training, with 82 proteins differentially expressed between the sexes at baseline. Proteins showing the most robust sex-specific response to exercise include SIRT3, MRPL41, and MBP. Irrespective of sex, cardiorespiratory fitness was associated with robust methylome changes (19,257 CpGs) and no proteomic changes. We did not observe sex differences in the association between cardiorespiratory fitness and the DNA methylome. Integrative multi-omic analysis identified sex-specific mitochondrial metabolism pathways associated with exercise responses. Lastly, exercise training and cardiorespiratory fitness shifted the DNA methylomes to be more similar between the sexes. CONCLUSIONS: We identified sex differences in protein expression changes, but not DNA methylation changes, following an endurance exercise training intervention; whereas we identified no sex differences in the DNA methylome or proteome response to lifelong training. Given the delicate interaction between sex and training as well as the limitations of the current study, more studies are required to elucidate whether there is a sex-specific training effect on the DNA methylome. We found that genes involved in mitochondrial metabolism pathways are differentially modulated between the sexes following endurance exercise training. These results shed light on sex differences in molecular adaptations to exercise training in skeletal muscle.


Assuntos
Proteínas Musculares , Proteoma , Feminino , Masculino , Humanos , Músculo Esquelético , Exercício Físico , Metilação de DNA
5.
Maturitas ; 178: 107844, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37716136

RESUMO

Aging is associated with a loss of skeletal muscle mass and function that negatively impacts the independence and quality of life of older individuals. Females demonstrate a distinct pattern of muscle aging compared to males, potentially due to menopause, when the production of endogenous sex hormones declines. This systematic review aims to investigate the current knowledge about the role of estrogen in female skeletal muscle aging. A systematic search of MEDLINE Complete, Global Health, Embase, PubMed, SPORTDiscus, and CINHAL was conducted. Studies were considered eligible if they compared a state of estrogen deficiency (e.g. postmenopausal females) or supplementation (e.g. estrogen therapy) to normal estrogen conditions (e.g. premenopausal females or no supplementation). Outcome variables of interest included measures of skeletal muscle mass, function, damage/repair, and energy metabolism. Quality assessment was completed with the relevant Johanna Briggs critical appraisal tool, and data were synthesized in a narrative manner. Thirty-two studies were included in the review. Compared to premenopausal women, postmenopausal women had reduced muscle mass and strength, but the effect of menopause on markers of muscle damage and expression of the genes involved in metabolic signaling pathways remains unclear. Some studies suggest a beneficial effect of estrogen therapy on muscle size and strength, but evidence is largely conflicting and inconclusive, potentially due to large variations in the reporting and status of exposure and outcomes. The findings from this review point toward a potential negative effect of estrogen deficiency on aging skeletal muscle, but further mechanistic evidence is needed to clarify its role.


Assuntos
Estrogênios , Qualidade de Vida , Masculino , Feminino , Humanos , Estrogênios/metabolismo , Envelhecimento/fisiologia , Menopausa , Músculo Esquelético/fisiologia
6.
Am J Physiol Cell Physiol ; 325(4): C1097-C1105, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721002

RESUMO

Cardiomyocyte calcium homeostasis is a tightly regulated process. The mitochondrial calcium uniporter (MCU) complex can buffer elevated cytosolic Ca2+ levels and consists of pore-forming proteins including MCU, and various regulatory proteins such as mitochondrial calcium uptake proteins 1 and 2 (MICU1/2). The stoichiometry of these proteins influences the sensitivity to Ca2+ and the activity of the complex. However, the factors that regulate their gene expression remain incompletely understood. Long noncoding RNAs (lncRNAs) regulate gene expression through various mechanisms, and we recently found that the lncRNA Tug1 increased the expression of Mcu and associated genes. To further explore this, we performed antisense LNA knockdown of Tug1 (Tug1 KD) in H9c2 rat cardiomyocytes. Tug1 KD increased MCU protein expression, yet pyruvate dehydrogenase dephosphorylation, which is indicative of mitochondrial Ca2+ uptake, was not enhanced. However, RNA-seq revealed that Tug1 KD increased Mcu along with differential expression of >1,000 genes including many related to Ca2+ regulation pathways in the heart. To understand the effect of this on Ca2+ signaling, we measured phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and its downstream target cAMP Response Element-Binding protein (CREB), a transcription factor known to drive Mcu gene expression. In response to a Ca2+ stimulus, the increase in CaMKII and CREB phosphorylation was attenuated by Tug1 KD. Inhibition of CaMKII, but not CREB, partially prevented the Tug1 KD-mediated increase in Mcu. Together, these data suggest that Tug1 modulates MCU expression via a mechanism involving CaMKII and regulates cardiomyocyte Ca2+ signaling, which could have important implications for cardiac function.NEW & NOTEWORTHY Calcium is essential for signaling, excitation contraction, and energy homeostasis in the heart. Despite this, molecular regulators of these processes are not completely understood. We report that knockdown of lncRNA Tug1 alters the calcium handling transcriptome and increases mitochondrial calcium uniporter expression via a mechanism involving CaMKII. As overexpression of MCU is known to be protective against pathological cardiac remodeling, targeting Tug1 may be a potential strategy for treating cardiovascular disease.


Assuntos
Sinalização do Cálcio , Miócitos Cardíacos , RNA Longo não Codificante , Animais , Ratos , Cálcio/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Miócitos Cardíacos/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
7.
J Sci Med Sport ; 26(11): 574-579, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37684155

RESUMO

OBJECTIVES: There is limited research into the use of performance and image enhancing drugs among women who participate in sport, despite evidence that women do use these substances and experience related harms. The aim of this project is to capture stakeholder perspectives on the current research, policy, and practice landscape in Australia regarding women's performance and image enhancing drug use in regulated and unregulated sport settings. DESIGN: Qualitative interviews. METHODS: Thirty-two semi-structured interviews were conducted online with stakeholders from Australia between September and December 2021. Interviews ranged between 15 and 90 min in duration. Data were imported into the NVivo (Version 12) platform and analysed using thematic analysis. RESULTS: Thirty-two participants (20 females and 12 males) who held a variety of roles (e.g., coach/strength coaches, gym owners, anti-doping agents, athletes) were interviewed. Fourteen participants reported performance and image enhancing drug use. There were four overarching themes generated from the data: 'participation in untested sports'; 'environmental factors driving use'; 'individual rationalisation'; and, 'the dark side of performance and image enhancing drug use'. CONCLUSIONS: Performance and image enhancing drug use was identified as an issue of concern for women competing in non-elite strength and power-based sports. Of particular concern is the influence of unqualified advice from third parties (i.e., coaches and partners) regarding performance and image enhancing drug use. The environments in which performance and image enhancing drug use occurs can impact individual decisions of women and eventuate in significant and long-lasting physical and psychological harms.


Assuntos
Substâncias para Melhoria do Desempenho , Esportes , Transtornos Relacionados ao Uso de Substâncias , Masculino , Humanos , Feminino , Atletas/psicologia , Austrália
8.
Harm Reduct J ; 20(1): 56, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37098574

RESUMO

BACKGROUND: The masculinizing effects from anabolic-androgenic steroid (AAS) appear to be different between men and women, leading to calls for more gender-specific information regarding women and AAS use. This study sought to gather perspectives from both men and women on the unique challenges surrounding women's use of AAS, irrespective of their personal use. Secondly, the study interrogated how women's AAS practices differ from those of men specifically. METHODS: The data presented in this paper come from a subsample of participants who participated in a larger study investigating women and performance and image enhancing drug (PIED) use in Australia. Participants were included in the current analysis if they were: (i) males or females who competed with or coached female strength athletes using AAS and (ii) female and male strength athletes who used AAS. The final sample comprised 21 participants of which there was a proportion of males (n = 7) and females (n = 7) using AAS. RESULTS: Women's choices in AAS selection were predominantly around oral compounds (e.g. Oxandrolone) as well as other PIEDs (e.g. Clenbuterol). Some women report the use of injectable AAS represents a change in the profile of the typical female user as it reportedly comes alongside drastic physical and psychological changes. CONCLUSIONS: The unique challenges facing women who use AAS are largely isolation and stigma, with little evidence-based practice or education being available to them online or through peer-groups. Future work may consider piloting harm reduction strategies that may be co-designed with this group.


Assuntos
Anabolizantes , Substâncias para Melhoria do Desempenho , Humanos , Masculino , Feminino , Androgênios/efeitos adversos , Esteroides , Esteróides Androgênicos Anabolizantes , Anabolizantes/efeitos adversos , Congêneres da Testosterona/efeitos adversos , Substâncias para Melhoria do Desempenho/efeitos adversos
9.
Hum Reprod ; 38(1): 46-56, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36350564

RESUMO

STUDY QUESTION: Do ovarian hormone changes influence the levels of cell-free or circulating microRNA (cf-miRNA) across the menstrual cycle? SUMMARY ANSWER: This exploratory study suggests that fluctuations in hormonal levels throughout the menstrual cycle may alter cf-miRNAs levels. WHAT IS KNOWN ALREADY: cf-miRNA levels vary with numerous pathological and physiological conditions in both males and females and are regulated by exogenous and endogenous factors, including hormones. STUDY DESIGN, SIZE, DURATION: A prospective, monocentric study was conducted between March and November 2021. Since this was a pilot study, the sample size was based on feasibility as well as previous similar human studies conducted in different tissues. A total of 20 participants were recruited for the study. PARTICIPANTS/MATERIALS, SETTING, METHODS: We conducted an exploratory study where blood samples were collected from 16 eumenorrheic females in the early follicular phase, the ovulation phase and the mid-luteal phase of the menstrual cycle. The levels of oestrogen, progesterone, LH and FSH were measured in serum by electrochemiluminescence. The levels of 174 plasma-enriched miRNAs were profiled using a PCR-based panel, including stringent internal and external controls to account for the potential differences in RNA extraction and reverse-transcription stemming from low-RNA input samples. MAIN RESULTS AND THE ROLE OF CHANCE: This exploratory study suggests that cf-miRNAs may play an active role in the regulation of the female cycle by mediating the expression of genes during fluctuating hormonal changes. Linear mixed-models, adjusted for the relevant variables, showed associations between phases of the menstrual cycle, ovarian hormones and plasma cf-miRNA levels. Validated gene targets of the cf-miRNAs varying with the menstrual cycle were enriched within female reproductive tissues and are primarily involved in cell proliferation and apoptosis. LARGE SCALE DATA: All relevant data are available from the Mendeley database: LEGER, Bertrand (2022), 'MiRNA and menstrual cycle', Mendeley Data, V1, doi: 10.17632/2br3zp79m3.1. LIMITATIONS, REASONS FOR CAUTION: Our study was conducted on a small participant cohort. However, it was tightly controlled for endogenous and exogenous confounders, which is critical to ensure robust and reproducible cf-miRNA research. Both adjusted and non-adjusted P-values are presented throughout the article. WIDER IMPLICATIONS OF THE FINDINGS: Measures of ovarian hormones should be rigorously included in future studies assessing cf-miRNA levels in females and used as time-varying confounders. Our results reinforce the importance of accounting for female-specific biological processes in physiology research by implementing practical or statistical mitigation strategies during data collection and analysis. STUDY FUNDING/COMPETING INTEREST(S): This study was supported by the Clinique romande de réadaptation, Sion, Switzerland. S.L. was supported by an Australian Research Council (ARC) Future Fellowship (FT10100278). D.H. was supported by an Executive Dean's Postdoctoral Research Fellowship from Deakin University. The authors declare no competing interests.


Assuntos
MicroRNA Circulante , MicroRNAs , Humanos , Feminino , Projetos Piloto , Hormônio Luteinizante , Estudos Prospectivos , Austrália , Ciclo Menstrual
10.
J Physiol ; 601(3): 419-434, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-34762308

RESUMO

Sex differences in exercise physiology, such as substrate metabolism and skeletal muscle fatigability, stem from inherent biological factors, including endogenous hormones and genetics. Studies investigating exercise physiology frequently include only males or do not take sex differences into consideration. Although there is still an underrepresentation of female participants in exercise research, existing studies have identified sex differences in physiological and molecular responses to exercise training. The observed sex differences in exercise physiology are underpinned by the sex chromosome complement, sex hormones and, on a molecular level, the epigenome and transcriptome. Future research in the field should aim to include both sexes, control for menstrual cycle factors, conduct large-scale and ethnically diverse studies, conduct meta-analyses to consolidate findings from various studies, leverage unique cohorts (such as post-menopausal, transgender, and those with sex chromosome abnormalities), as well as integrate tissue and cell-specific -omics data. This knowledge is essential for developing deeper insight into sex-specific physiological responses to exercise training, thus directing future exercise physiology studies and practical application.


Assuntos
Exercício Físico , Músculo Esquelético , Caracteres Sexuais , Feminino , Humanos , Masculino , Exercício Físico/fisiologia , Hormônios Esteroides Gonadais/fisiologia , Músculo Esquelético/fisiologia
11.
Med Sci Sports Exerc ; 54(12): 2167-2177, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36136596

RESUMO

INTRODUCTION: Female athletes sleep less and report more sleep problems than their male counterparts. Inadequate sleep reduces maximal strength in male athletes; however, little is known about the impact of sleep restriction (SR) on the quantity and quality of resistance exercise performed by female athletes. This study investigated the effect of nine nights of moderate SR on repeated resistance exercise performance, hormonal responses, and perceived fatigue in females. METHODS: Ten healthy, resistance-trained, eumenorrheic females age 18-35 yr underwent nine nights of SR (5-h time in bed) and normal sleep (NS; ≥7-h time in bed) in a randomized, crossover fashion with a minimum 6-wk washout. Participants completed four resistance exercise sessions per trial, with blood samples collected before and after exercise. Exercise performance was assessed using volume load, reactive strength index, and mean concentric velocity with rating of perceived exertion recorded after exercise. Participants completed awakening saliva sampling and the Multi-component Training Distress Scale daily. RESULTS: Volume load decreased trivially (<1%, P < 0.05) with SR. Mean concentric velocity per set was slower during SR for the lower-body (up to 15%, P < 0.05), but not the upper-body, compound lifts. Intraset velocity loss was up to 7% greater during SR for back squats ( P < 0.05). SR increased salivary cortisol area under the curve (by 42%), total training distress (by 84%), and session perceived exertion (by 11%). CONCLUSIONS: Sustained SR reduces markers of resistance exercise quality (bar velocity) more than quantity (volume load) and increases perceived effort at the same relative intensity in resistance-trained females. Markers of exercise quality and internal load may be more sensitive than volume load, to advise coaches to the decline in lifting performance for female athletes experiencing SR.


Assuntos
Treinamento Resistido , Adolescente , Adulto , Feminino , Humanos , Adulto Jovem , Atletas , Exercício Físico/fisiologia , Sono/fisiologia , Privação do Sono
12.
BMC Biol ; 20(1): 164, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35850762

RESUMO

BACKGROUND: Mitochondria have an essential role in regulating metabolism and integrate environmental and physiological signals to affect processes such as cellular bioenergetics and response to stress. In the metabolically active skeletal muscle, mitochondrial biogenesis is one important component contributing to a broad set of mitochondrial adaptations occurring in response to signals, which converge on the biogenesis transcriptional regulator peroxisome proliferator-activated receptor coactivator 1-alpha (PGC-1α), and is central to the beneficial effects of exercise in skeletal muscle. We investigated the role of long non-coding RNA (lncRNA) taurine-upregulated gene 1 (TUG1), which interacts with PGC-1α in regulating transcriptional responses to exercise in skeletal muscle. RESULTS: In human skeletal muscle, TUG1 gene expression was upregulated post-exercise and was also positively correlated with the increase in PGC-1α gene expression (PPARGC1A). Tug1 knockdown (KD) in differentiating mouse myotubes led to decreased Ppargc1a gene expression, impaired mitochondrial respiration and morphology, and enhanced myosin heavy chain slow isoform protein expression. In response to a Ca2+-mediated stimulus, Tug1 KD prevented an increase in Ppargc1a expression. RNA sequencing revealed that Tug1 KD impacted mitochondrial Ca2+ transport genes and several downstream PGC-1α targets. Finally, Tug1 KD modulated the expression of ~300 genes that were upregulated in response to an in vitro model of exercise in myotubes, including genes involved in regulating myogenesis. CONCLUSIONS: We found that TUG1 is upregulated in human skeletal muscle after a single session of exercise, and mechanistically, Tug1 regulates transcriptional networks associated with mitochondrial calcium handling, muscle differentiation and myogenesis. These data demonstrate that lncRNA Tug1 exerts regulation over fundamental aspects of skeletal muscle biology and response to exercise stimuli.


Assuntos
RNA Longo não Codificante/genética , Animais , Metabolismo Energético , Humanos , Camundongos , Mitocôndrias/metabolismo , Desenvolvimento Muscular/genética , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , RNA Longo não Codificante/metabolismo
13.
Eur J Sport Sci ; 22(7): 1035-1045, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33890831

RESUMO

Sex steroids, commonly referred to as sex hormones, are integral to the development and maintenance of the human reproductive system. In addition, male (androgens) and female (estrogens and progestogens) sex hormones promote the development of secondary sex characteristics by targeting a range of other tissues, including skeletal muscle. The role of androgens on skeletal muscle mass, function and metabolism has been well described in males, yet female specific studies are scarce in the literature. This narrative review summarises the available evidence around the mechanistic role of androgens, estrogens and progestogens in female skeletal muscle. An analysis of the literature indicates that sex steroids play important roles in the regulation of female skeletal muscle mass and function. The free fractions of testosterone and progesterone in serum were consistently associated with the regulation of muscle mass, while estrogens may be primarily involved in mediating the muscle contractile function in conjunction with other sex hormones. Muscle strength was however not directly associated with any hormone in isolation when at physiological concentrations. Importantly, recent evidence suggests that intramuscular sex hormone concentrations may be more strongly associated with muscle size and function than circulating forms, providing interesting opportunities for future research. By combining cross-sectional, interventional and mechanical studies, this review aims to provide a broad, multidisciplinary picture of the current knowledge of the effects of sex steroids on skeletal muscle in females, with a focus on the regulation of muscle size and function and an insight into their clinical implications. HighlightsFree testosterone, but not total testosterone, is associated with lean mass but not strength in pre- and post-menopausal females.Progesterone and estrogens may regulate muscle mass and strength, respectively, in females.Intra-muscular steroids may be more closely associated to muscle mass and strength, compared to systemic fractions.


Assuntos
Androgênios , Progestinas , Androgênios/metabolismo , Androgênios/farmacologia , Estudos Transversais , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Hormônios Esteroides Gonadais/metabolismo , Hormônios Esteroides Gonadais/farmacologia , Humanos , Masculino , Músculo Esquelético/fisiologia , Progesterona/metabolismo , Progesterona/farmacologia , Progestinas/metabolismo , Progestinas/farmacologia , Esteroides/metabolismo , Esteroides/farmacologia , Testosterona
14.
Clin Epigenetics ; 13(1): 202, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34732242

RESUMO

Nearly all human complex traits and diseases exhibit some degree of sex differences, with epigenetics being one of the main contributing factors. Various tissues display sex differences in DNA methylation; however, this has not yet been explored in skeletal muscle, despite skeletal muscle being among the tissues with the most transcriptomic sex differences. For the first time, we investigated the effect of sex on autosomal DNA methylation in human skeletal muscle across three independent cohorts (Gene SMART, FUSION, and GSE38291) using a meta-analysis approach, totalling 369 human muscle samples (222 males and 147 females), and integrated this with known sex-biased transcriptomics. We found 10,240 differentially methylated regions (DMRs) at FDR < 0.005, 94% of which were hypomethylated in males, and gene set enrichment analysis revealed that differentially methylated genes were involved in muscle contraction and substrate metabolism. We then investigated biological factors underlying DNA methylation sex differences and found that circulating hormones were not associated with differential methylation at sex-biased DNA methylation loci; however, these sex-specific loci were enriched for binding sites of hormone-related transcription factors (with top TFs including androgen (AR), estrogen (ESR1), and glucocorticoid (NR3C1) receptors). Fibre type proportions were associated with differential methylation across the genome, as well as across 16% of sex-biased DNA methylation loci (FDR < 0.005). Integration of DNA methylomic results with transcriptomic data from the GTEx database and the FUSION cohort revealed 326 autosomal genes that display sex differences at both the epigenome and transcriptome levels. Importantly, transcriptional sex-biased genes were overrepresented among epigenetic sex-biased genes (p value = 4.6e-13), suggesting differential DNA methylation and gene expression between male and female muscle are functionally linked. Finally, we validated expression of three genes with large effect sizes (FOXO3A, ALDH1A1, and GGT7) in the Gene SMART cohort with qPCR. GGT7, involved in antioxidant metabolism, displays male-biased expression as well as lower methylation in males across the three cohorts. In conclusion, we uncovered 8420 genes that exhibit DNA methylation differences between males and females in human skeletal muscle that may modulate mechanisms controlling muscle metabolism and health.


Assuntos
Epigenoma/fisiologia , Perfilação da Expressão Gênica/métodos , Músculo Esquelético/metabolismo , Fatores Sexuais , Ciclização de Substratos/fisiologia , Idoso , Feminino , Perfilação da Expressão Gênica/estatística & dados numéricos , Humanos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/fisiopatologia
15.
Exp Physiol ; 106(7): 1597-1611, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33963617

RESUMO

NEW FINDINGS: What is the central question of this study? Striated muscle activator of rho signalling (STARS) is an actin-binding protein that regulates transcriptional pathways controlling muscle function, growth and myogenesis, processes that are impaired in dystrophic muscle: what is the regulation of the STARS pathway in Duchenne muscular dystrophy (DMD)? What is the main finding and its importance? Members of the STARS signalling pathway are reduced in the quadriceps of patients with DMD and in mouse models of muscular dystrophy. Overexpression of STARS in the dystrophic deficient mdx mouse model increased maximal isometric specific force and upregulated members of the actin cytoskeleton and oxidative phosphorylation pathways. Regulating STARS may be a therapeutic approach to enhance muscle health. ABSTRACT: Duchenne muscular dystrophy (DMD) is characterised by impaired cytoskeleton organisation, cytosolic calcium handling, oxidative stress and mitochondrial dysfunction. This results in progressive muscle damage, wasting and weakness and premature death. The striated muscle activator of rho signalling (STARS) is an actin-binding protein that activates the myocardin-related transcription factor-A (MRTFA)/serum response factor (SRF) transcriptional pathway, a pathway regulating cytoskeletal structure and muscle function, growth and repair. We investigated the regulation of the STARS pathway in the quadriceps muscle from patients with DMD and in the tibialis anterior (TA) muscle from the dystrophin-deficient mdx and dko (utrophin and dystrophin null) mice. Protein levels of STARS, SRF and RHOA were reduced in patients with DMD. STARS, SRF and MRTFA mRNA levels were also decreased in DMD muscle, while Stars mRNA levels were decreased in the mdx mice and Srf and Mrtfa mRNAs decreased in the dko mice. Overexpressing human STARS (hSTARS) in the TA muscles of mdx mice increased maximal isometric specific force by 13% (P < 0.05). This was not associated with changes in muscle mass, fibre cross-sectional area, fibre type, centralised nuclei or collagen deposition. Proteomics screening followed by pathway enrichment analysis identified that hSTARS overexpression resulted in 31 upregulated and 22 downregulated proteins belonging to the actin cytoskeleton and oxidative phosphorylation pathways. These pathways are impaired in dystrophic muscle and regulate processes that are vital for muscle function. Increasing the STARS protein in dystrophic muscle improves muscle force production, potentially via synergistic regulation of cytoskeletal structure and energy production.


Assuntos
Distrofia Muscular de Duchenne , Fosforilação Oxidativa , Citoesqueleto de Actina/metabolismo , Animais , Modelos Animais de Doenças , Distrofina/genética , Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Proteínas dos Microfilamentos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo
16.
Sci Rep ; 11(1): 10226, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986323

RESUMO

The aim of this study was to examine the relationship between endogenous testosterone concentrations and lean mass and handgrip strength in healthy, pre-menopausal females. Testosterone has been positively associated with lean mass and strength in young and older males. Whether this relationship exists in pre-menopausal females is unknown. Secondary data from the 2013-2014 National Health and Nutrition Examination Survey were used to test this relationship. Females were aged 18-40 (n = 716, age 30 ± 6 years, mean ± SD) and pre-menopausal. Multivariate linear regression models were used to examine associations between total testosterone, lean mass index (LMI) and handgrip strength. Mean ± SD testosterone concentration was 1.0 ± 0.6 nmol L-1 and mean free androgen index (FAI) was 0.02 ± 0.02. In pre-menopausal females, testosterone was not associated with LMI (ß = 0.05; 95%CI - 0.04, 0.15; p = 0.237) or handgrip strength (ß = 0.01; 95%CI - 0.11, 0.12; p = 0.926) in a statistically significant manner. Conversely, FAI was associated with LMI (ß = - 0.03; 95%CI - 0.05, - 0.02; p = 0.000) in a quadratic manner, meaning LMI increases with increasing FAI levels. Handgrip strength was not associated with FAI (ß = 0.06; 95%CI - 0.02, 0.15; p = 0.137). These findings indicate that FAI, but not total testosterone, is associated with LMI in pre-menopausal females. Neither FAI nor total testosterone are associated with handgrip strength in pre-menopausal females when testosterone concentrations are not altered pharmacologically.


Assuntos
Peso Corporal/fisiologia , Força da Mão/fisiologia , Testosterona/análise , Adulto , Androgênios/análise , Androgênios/sangue , Composição Corporal , Feminino , Mãos/fisiologia , Humanos , Inquéritos Nutricionais , Pré-Menopausa , Testosterona/sangue , Magreza/metabolismo
17.
Biomacromolecules ; 22(5): 1867-1874, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33881832

RESUMO

Three-dimensional (3D) microfibrous scaffolds hold great promise for biomedical applications due to their good mechanical properties and biomimetic structure similar to that of the fibrous natural extracellular matrix. However, the large diameter and smooth surface of microfibers provide limited cues for regulating cell activity and behaviors. In this work, we report a facile heat-welding-and-embossing strategy to develop 3D macroporous microfibrous scaffolds with a featured surface topography. Here, solid monosodium glutamate (MSG) particles with crystalline ridge-like surface features play a key role as templates in both the formation of scaffold pores and the surface embossing of scaffold fibers when short thermoplastic polypropylene microfibers were heat-welded. The embossing process can be programmed by adjusting heating temperatures and MSG/fiber ratios. Compared to traditional 3D microfibrous scaffolds, the as-welded 3D scaffolds show higher compressive strength and modulus. Taking mouse C2C12 myoblasts as a model cell line, the scaffolds with embossed surface features significantly promoted the growth of cells, interactions of cells and scaffolds, and formation of myotubes. The findings indicate that the as-prepared 3D scaffolds are a good platform for cell culture study. The facile strategy can be applied to fabricate different fibrous scaffolds by changing the combination of templates and thermoplastic polymer fibers with a melting temperature lower than that of the template. The obtained insights in this work could provide a guide and inspiration for the design and fabrication of functional 3D fibrous scaffolds.


Assuntos
Alicerces Teciduais , Soldagem , Animais , Matriz Extracelular , Temperatura Alta , Camundongos , Engenharia Tecidual
18.
J Appl Physiol (1985) ; 130(5): 1522-1533, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33764170

RESUMO

In older adults, leucine mitigated the loss of insulin sensitivity associated with muscular disuse. Leucine supplementation increased mitochondrial respiration and reduced a marker of oxidative stress following periods of disuse and rehabilitation.


Assuntos
Repouso em Cama , Comportamento Sedentário , Idoso , Humanos , Leucina/metabolismo , Mitocôndrias , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
19.
Physiol Rep ; 9(1): e14660, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33400856

RESUMO

Chronic sleep loss is a potent catabolic stressor, increasing the risk of metabolic dysfunction and loss of muscle mass and function. To provide mechanistic insight into these clinical outcomes, we sought to determine if acute sleep deprivation blunts skeletal muscle protein synthesis and promotes a catabolic environment. Healthy young adults (N = 13; seven male, six female) were subjected to one night of total sleep deprivation (DEP) and normal sleep (CON) in a randomized cross-over design. Anabolic and catabolic hormonal profiles were assessed across the following day. Postprandial muscle protein fractional synthesis rate (FSR) was assessed between 13:00 and 15:00 and gene markers of muscle protein degradation were assessed at 13:00. Acute sleep deprivation reduced muscle protein synthesis by 18% (CON: 0.072 ± 0.015% vs. DEP: 0.059 ± 0.014%·h-1 , p = .040). In addition, sleep deprivation increased plasma cortisol by 21% (p = .030) and decreased plasma testosterone by 24% (p = .029). No difference was found in the markers of protein degradation. A single night of total sleep deprivation is sufficient to induce anabolic resistance and a procatabolic environment. These acute changes may represent mechanistic precursors driving the metabolic dysfunction and body composition changes associated with chronic sleep deprivation.


Assuntos
Hidrocortisona/sangue , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Privação do Sono/metabolismo , Testosterona/sangue , Adulto , Feminino , Humanos , Masculino , Músculo Esquelético/patologia , Proteólise , Privação do Sono/sangue , Adulto Jovem
20.
J Clin Densitom ; 24(1): 106-111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31848038

RESUMO

INTRODUCTION: Inter-/intramuscular fat can be assessed with peripheral Quantitative Computed Tomography (pQCT) and is of interest as an indicator of "muscle quality." Typical pQCT scan sites (forearm, lower leg) have a low amount of inter-/intramuscular fat, however distal diaphyseal femur scan sites with conspicuous inter-/intramuscular fat have been identified as potentially more prudent scan sites, even in healthy adolescents. However, current state of the art analysis methods require labor-intensive manual segmentation of the scan. The purpose of the present study was to evaluate the reliability of a novel open source automated enclosing convex polygon approach (source code https://github.com/tjrantal/pQCT, commit cec9bce) to quantify inter-/intramuscular fat from femoral pQCT scans in healthy adults. METHODOLOGY: The distal diaphyseal femur (25% of tibial length from the knee joint towards the hip) of 27 adults aged 18-50 yr were scanned twice, 1 wk apart, using pQCT. Subcutaneous fat, muscle, inter-/intramuscular fat, and marrow areas, and corresponding densities were evaluated using a method we have reported previously, as well as the novel enclosing convex polygon method. RESULTS: The session-to-session reliability of the assessments was fair to excellent using the previously reported method as indicated by intraclass correlation coefficient (ICC2,1) ranging from 0.45 to 1.00, while the novel method produced excellent reliability (ICC2,1 0.78-1.00). CONCLUSION: Distal diaphyseal femur appears to be a potentially informative and prudent scan site for inter-/intramuscular fat evaluation with pQCT.


Assuntos
Fêmur , Tomografia Computadorizada por Raios X , Adolescente , Adulto , Diáfises/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Humanos , Reprodutibilidade dos Testes , Tíbia/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA