Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 34: 102040, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37842166

RESUMO

Therapeutic genome editing has the potential to cure diseases by directly correcting genetic mutations in tissues and cells. Recent progress in the CRISPR-Cas9 systems has led to breakthroughs in gene editing tools because of its high orthogonality, versatility, and efficiency. However, its safe and effective administration to target organs in patients is a major hurdle. Extracellular vesicles (EVs) are endogenous membranous particles secreted spontaneously by all cells. They are key actors in cell-to-cell communication, allowing the exchange of select molecules such as proteins, lipids, and RNAs to induce functional changes in the recipient cells. Recently, EVs have displayed their potential for trafficking the CRISPR-Cas9 system during or after their formation. In this review, we highlight recent developments in EV loading, surface functionalization, and strategies for increasing the efficiency of delivering CRISPR-Cas9 to tissues, organs, and cells for eventual use in gene therapies.

2.
Front Med (Lausanne) ; 10: 1128557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305116

RESUMO

Duchenne muscular dystrophy is a rare and lethal hereditary disease responsible for progressive muscle wasting due to mutations in the DMD gene. We used the CRISPR-Cas9 Prime editing technology to develop different strategies to correct frameshift mutations in DMD gene carrying the deletion of exon 52 or exons 45 to 52. With optimized epegRNAs, we were able to induce the specific substitution of the GT nucleotides of the splice donor site of exon 53 in up to 32% of HEK293T cells and 28% of patient myoblasts. We also achieved up to 44% and 29% deletion of the G nucleotide of the GT splice site of exon 53, as well as inserted 17% and 5.5% GGG between the GT splice donor site of exon 51 in HEK293T cells and human myoblasts, respectively. The modification of the splice donor site for exon 51 and exon 53 provoke their skipping and allowed exon 50 to connect to exon 53 and allowed exon 44 to connect to exon 54, respectively. These corrections restored the expression of dystrophin as demonstrated by western blot. Thus, Prime editing was used to induce specific substitutions, insertions and deletions in the splice donor sites for exons 51 and 53 to correct the frameshift mutations in DMD gene carrying deletions of exon 52 and exons 45 to 52, respectively.

3.
CRISPR J ; 6(4): 369-385, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37347931

RESUMO

The worldwide proliferation of the SARS-CoV-2 virus in the past 3 years has allowed the virus to accumulate numerous mutations. Dangerous lineages have emerged one after another, each leading to a new wave of the pandemic. In this study, we have developed the THRASOS pipeline to rapidly discover lineage-specific mutation signatures and thus advise the development of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-based diagnostic tests. We also optimized a strategy to modify loop-mediated isothermal amplification amplicons for downstream use with Cas12 and Cas13 for future multiplexing. The close ancestry of the BA.1 and BA.2 variants of SARS-CoV-2 (Omicron) made these excellent candidates for the development of a first test using this workflow. With a quick turnaround time and low requirements for laboratory equipment, the test we have created is ideally suited for settings such as mobile clinics lacking equipment such as Next-Generation Sequencers or Sanger Sequencers and the personnel to run these devices.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/genética , Sistemas CRISPR-Cas/genética , Edição de Genes
4.
Front Med (Lausanne) ; 9: 859930, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35419381

RESUMO

Duchenne muscular dystrophy (DMD) is an X-linked hereditary disease characterized by progressive muscle wasting due to modifications in the DMD gene (exon deletions, nonsense mutations, intra-exonic insertions or deletions, exon duplications, splice site defects, and deep intronic mutations) that result in a lack of functional dystrophin expression. Many therapeutic approaches have so far been attempted to induce dystrophin expression and improve the patient phenotype. In this manuscript, we describe the relevant updates for some therapeutic strategies for DMD aiming to restore dystrophin expression. We also present and analyze in vitro and in vivo ongoing experimental approaches to treat the disease.

5.
Neurotherapeutics ; 19(3): 931-941, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35165856

RESUMO

Discovery of the CRISPR-Cas (clustered regularly interspaced short palindromic repeat, CRISPR-associated) system a decade ago has opened new possibilities in the field of precision medicine. CRISPR-Cas was initially identified in bacteria and archaea to play a protective role against foreign genetic elements during viral infections. The application of this technique for the correction of different mutations found in the Duchenne muscular dystrophy (DMD) gene led to the development of several potential therapeutic approaches for DMD patients. The mutations responsible for Duchenne muscular dystrophy mainly include exon deletions (70% of patients) and point mutations (about 30% of patients). The CRISPR-Cas 9 technology is becoming increasingly precise and is acquiring diverse functions through novel innovations such as base editing and prime editing. However, questions remain about its translation to the clinic. Current research addressing off-target editing, efficient muscle-specific delivery, immune response to nucleases, and vector challenges may eventually lead to the clinical use of the CRISPR-Cas9 technology. In this review, we present recent CRISPR-Cas9 strategies to restore dystrophin expression in vitro and in animal models of DMD.


Assuntos
Distrofia Muscular de Duchenne , Animais , Sistemas CRISPR-Cas/genética , Modelos Animais de Doenças , Edição de Genes/métodos , Terapia Genética/métodos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/terapia
6.
Mol Ther Nucleic Acids ; 24: 253-263, 2021 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-33815938

RESUMO

The amyloid precursor protein (APP) is a transmembrane protein mostly found in neurons. Cleavage of this protein by ß-secretase can lead to the formation of amyloid-ß (Aß) peptide plaque, which leads to Alzheimer's disease. Genomic analysis of an Icelandic population that did not show symptoms of Alzheimer's at an advanced age led to the discovery of the A673T mutation. This mutation can reduce ß-secretase cleavage by 40%. We hypothesized that the insertion of this mutation in patients' neurons could be an effective and sustainable method of slowing down or even stopping the progression of Alzheimer's disease. We modified the APP gene in HEK293T cells and in SH-SY5Y neuroblastoma using a Cas9 nickase (Cas9n)-deaminase enzyme to convert the alanine codon to a threonine. Several Cas9n-deaminase variants were tested to compare their efficiency of conversion. The results were characterized and quantified by deep sequencing. We successfully introduced the A673T mutation in 53% of HEK293T cells alongside a new mutation (E674K), which seemed to further reduce Aß peptide accumulation. Our approach aimed to provide a new strategy for the treatment of Alzheimer's and in so doing, demonstrate the capacity of base editing techniques for treating genetic diseases.

7.
PLoS One ; 15(12): e0237122, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33370284

RESUMO

The deposition of Aß plaques in the brain leads to the onset and development of Alzheimer's disease. The Amyloid precursor protein (APP) is cleaved by α-secretase (non-amyloidogenic processing of APP), however increased cleavage by ß-secretase (BACE1) leads to the accumulation of Aß peptides, which forms plaques. APP mutations mapping to exons 16 and 17 favor plaque accumulation and cause Familial Alzheimer Disease (FAD). However, a variant of the APP gene (A673T) originally found in an Icelandic population reduces BACE1 cleavage by 40%. A series of plasmids containing the APP gene, each with one of 29 different FAD mutations mapping to exon 16 and exon 17 was created. These plasmids were then replicated with the addition of the A673T mutation. Combined these formed the library of plasmids that was used in this study. The plasmids were transfected in neuroblastomas to assess the effect of this mutation on Aß peptide production. The production of Aß peptides was decreased for some FAD mutations due to the presence of the co-dominant A673T mutation. The reduction of Aß peptide concentrations for the London mutation (V717I) even reached the same level as for A673T control in SH-SY5Y cells. These preliminary results suggest that the insertion of A673T in APP genes containing FAD mutations might confer a clinical benefit in preventing or delaying the onset of some FADs.


Assuntos
Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Doença de Alzheimer/metabolismo , Linhagem Celular Tumoral , Humanos , Mutação , Placa Amiloide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA