Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
J Perinat Med ; 49(2): 119-126, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33001855

RESUMO

OBJECTIVES: Preterm labour is the leading cause of hospitalization during pregnancy. In France, it results in more than 60,000 births before 37 weeks of gestation every year. Recent studies suggest that detection of placental α-microglobulin-1 (PAMG-1) in vaginal secretions among women presenting symptoms of preterm labour with intact membranes has good predictive value for the onset of spontaneous preterm delivery within 7 days. The test is especially interesting, in that the repetition of antenatal corticosteroids for foetal lung maturation is no longer recommended in France and the effect of the initial administration is most beneficial in the 24 h to 7 days afterwards. METHODS: We included all studies listed in PubMed and clinicaltrials.gov with the terms "PAMG-1" and either "preterm labor" or "preterm labour", while excluding all studies on the subject of "rupture of the membranes" from 2000 through 2017. Ten studies were thus included. RESULTS: In women who had both the PAMG-1 and foetal fibronectin test, the PAMG-1 test was statistically superior to the measurement of cervical length for positive predictive value (p<0.0074), negative predictive value (p=0.0169) and specificity (p<0.001) for the prediction of spontaneous preterm delivery within 7 days. CONCLUSIONS: The use of PAMG-1 may make it possible to target the women at risk with a shortened cervix on ultrasound (<25 mm) those with an imminent preterm delivery and therefore to adapt management, especially the administration of antenatal corticosteroid therapy.


Assuntos
Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Trabalho de Parto Prematuro/diagnóstico , Biomarcadores/metabolismo , Colo do Útero/diagnóstico por imagem , Feminino , Fibronectinas/metabolismo , Humanos , Trabalho de Parto Prematuro/metabolismo , Gravidez , Ultrassonografia Pré-Natal , Esfregaço Vaginal
2.
BMC Pregnancy Childbirth ; 20(1): 442, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32746802

RESUMO

BACKGROUND: Threatened preterm delivery (TPD) is the leading cause of inpatient admissions during pregnancy. The ability to predict the risk of imminent preterm delivery is thus a major priority in obstetrics. The aim of our study is to assess the diagnostic performance of the test to detect the placental alpha microglobulin 1 (PAMG-1) for the prediction of delivery within 7 days in women with TPD. METHODS: This is a prospective multicenter diagnostic study. Inclusion criteria are singleton pregnancy, gestational age between 24 + 0 and 33 + 6 weeks inclusive, cervical measurement 25 mm or less assessed by transvaginal ultrasound (with or without uterine contractions), clinically intact membranes and cervical dilatation < 3 cm assessed by digital examination. According to the current protocol, when a women presents with TPD and the diagnosis is confirmed by transvaginal ultrasound, a vaginal sample to test for genital infection is performed. At the same time, the midwife will perform the PartoSure® test. To perform this analysis, a sample of cervicovaginal secretions is taken with the vaginal swab furnished in the test kit. The primary outcome is the specificity of the PartoSure® test of women who gave birth more than 7 days after their hospitalization for TPD. The secondary outcomes are the sensitivity, PPV, and NPV of the Partosure® test and the factors associated with false positives (with a univariate logistic regression model). Starting with the hypothesis of an anticipated specificity of 89%, if we want to estimate this specificity with a confidence interval of ± 5%, we will require 151 women who do not give birth within 7 days. We therefore decided to include 400 women over a period of two years to have a larger number of events (deliveries within 7 days). DISCUSSION: The different tests already used such as fetal fibronectin and phIGFBP-1, are not sufficiently relevant to recommend their use in daily practice. The different studies of PAMG-1 described above thus provide support for the use of this substance, tested by PartoSure®. Nonetheless, other larger studies are necessary to validate its use in daily practice and our study could answer this question. TRIAL REGISTRATION: NCT03401255 (January 15, 2018).


Assuntos
Colo do Útero/química , Proteína 1 de Ligação a Fator de Crescimento Semelhante à Insulina/análise , Nascimento Prematuro/diagnóstico , Feminino , França , Hospitais , Humanos , Gravidez , Estudos Prospectivos , Medição de Risco/métodos , Sensibilidade e Especificidade , Vagina/diagnóstico por imagem
3.
Neurosurgery ; 87(1): 150-156, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32374868

RESUMO

BACKGROUND: Management of small (<7 mm) unruptured intracranial aneurysms (UIA) remains controversial. Retrospective studies have suggested that post gadolinium arterial wall enhancement (AWE) of UIA on magnetic resonance imaging (MRI) may reflect aneurysm wall instability, and hence may highlight a higher risk of UIA growth. This trial aims at exploring wall imaging findings of UIAs with consecutive follow-up to substantiate these assumptions. OBJECTIVE: To develop diagnostic and predictive tools for the risk of IA evolution. Our aim is to demonstrate in clinical practice the predictive value of AWE for UIA growth. The growth will be determined by any modification of the UIA measurement. UIA growth and the UIA wall enhancement will be assessed in consensus by 2 expert neuroradiologists. METHODS: The French prospective UCAN project is a noninterventional international wide and multicentric cohort. UIA of bifurcation between 3 and 7 mm for whom a clinical and imaging follow-up without occlusion treatment was scheduled by local multidisciplinary staff will be included. Extensive clinical, biological, and imaging data will be recorded during a 3-yr follow-up. EXPECTED OUTCOMES: Discovering to improve the efficiency of UIA follow-up by identifying additional clinical, imaging, biological, and anatomic risk factors of UIA growth. DISCUSSION: A prospective nationwide recruitment allows for the inclusion of a large cohort of patients with UIA. It will combine clinical phenotyping and specific imaging with AWE screening. It will enable to exploit metadata and to explore some pathophysiological pathways by crossing clinical, genetic, biological, and imaging information.


Assuntos
Aneurisma Intracraniano/diagnóstico por imagem , Aneurisma Intracraniano/terapia , Imageamento por Ressonância Magnética/métodos , Idoso , Consenso , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Risco
4.
Sci Rep ; 7(1): 113, 2017 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-28273916

RESUMO

Delayed-rectifier potassium channels (hERG and KCNQ1) play a major role in cardiac repolarization. These channels are formed by a tetrameric pore (S5-S6) surrounded by four voltage sensor domains (S1-S4). Coupling between voltage sensor domains and the pore activation gate is critical for channel voltage-dependence. However, molecular mechanisms remain elusive. Herein, we demonstrate that covalently binding, through a disulfide bridge, a peptide mimicking the S4-S5 linker (S4-S5L) to the channel S6 C-terminus (S6T) completely inhibits hERG. This shows that channel S4-S5L is sufficient to stabilize the pore activation gate in its closed state. Conversely, covalently binding a peptide mimicking S6T to the channel S4-S5L prevents its inhibiting effect and renders the channel almost completely voltage-independent. This shows that the channel S4-S5L is necessary to stabilize the activation gate in its closed state. Altogether, our results provide chemical evidence that S4-S5L acts as a voltage-controlled ligand that binds S6T to lock the channel in a closed state, elucidating the coupling between voltage sensors and the gate in delayed rectifier potassium channels and potentially other voltage-gated channels.

5.
J Mol Cell Cardiol ; 99: 1-13, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27590098

RESUMO

Patients with HIV present with a higher prevalence of QT prolongation, of which molecular bases are still not clear. Among HIV proteins, Tat serves as a transactivator that stimulates viral genes expression and is required for efficient HIV replication. Tat is actively secreted into the blood by infected T-cells and affects organs such as the heart. Tat has been shown to alter cardiac repolarization in animal models but how this is mediated and whether this is also the case in human cells is unknown. In the present study, we show that Tat transfection in heterologous expression systems led to a decrease in hERG (underlying cardiac IKr) and human KCNE1-KCNQ1 (underlying cardiac IKs) currents and to an acceleration of their deactivation. This is consistent with a decrease in available phosphatidylinositol-(4,5)-bisphosphate (PIP2). A mutant Tat, unable to bind PIP2, did not reproduce the observed effects. In addition, WT-Tat had no effect on a mutant KCNQ1 which is PIP2-insensitive, further confirming the hypothesis. Twenty-four-hour incubation of human induced pluripotent stem cells-derived cardiomyocytes with Wild-type Tat reduced IKr and accelerated its deactivation. Concordantly, this Tat incubation led to a prolongation of the action potential (AP) duration. Events of AP alternans were also recorded in the presence of Tat, and were exacerbated at a low pacing cycle length. Altogether, these data obtained on human K+ channels both in heterologous expression systems and in human cardiomyocytes suggest that Tat sequesters PIP2, leading to a reduction of IKr and IKs, and provide a molecular mechanism for QT prolongation in HIV-infected patients.


Assuntos
Potenciais de Ação , Fosfatidilinositol 4,5-Difosfato/metabolismo , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Animais , Células COS , Diferenciação Celular , Linhagem Celular , Canal de Potássio ERG1/metabolismo , Fenômenos Eletrofisiológicos , Expressão Gênica , Células HEK293 , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transfecção , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
6.
J Am Heart Assoc ; 5(6)2016 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-27287695

RESUMO

BACKGROUND: The Brugada syndrome is an inherited cardiac arrhythmia associated with high risk of sudden death. Although 20% of patients with Brugada syndrome carry mutations in SCN5A, the molecular mechanisms underlying this condition are still largely unknown. METHODS AND RESULTS: We combined whole-exome sequencing and linkage analysis to identify the genetic variant likely causing Brugada syndrome in a pedigree for which SCN5A mutations had been excluded. This approach identified 6 genetic variants cosegregating with the Brugada electrocardiographic pattern within the pedigree. In silico gene prioritization pointed to 1 variant residing in KCNAB2, which encodes the voltage-gated K(+) channel ß2-subunit (Kvß2-R12Q). Kvß2 is widely expressed in the human heart and has been shown to interact with the fast transient outward K(+) channel subunit Kv4.3, increasing its current density. By targeted sequencing of the KCNAB2 gene in 167 unrelated patients with Brugada syndrome, we found 2 additional rare missense variants (L13F and V114I). We then investigated the physiological effects of the 3 KCNAB2 variants by using cellular electrophysiology and biochemistry. Patch-clamp experiments performed in COS-7 cells expressing both Kv4.3 and Kvß2 revealed a significant increase in the current density in presence of the R12Q and L13F Kvß2 mutants. Although biotinylation assays showed no differences in the expression of Kv4.3, the total and submembrane expression of Kvß2-R12Q were significantly increased in comparison with wild-type Kvß2. CONCLUSIONS: Altogether, our results indicate that Kvß2 dysfunction can contribute to the Brugada electrocardiographic pattern.


Assuntos
Síndrome de Brugada/genética , Mutação com Ganho de Função/genética , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Eletrocardiografia , Feminino , Predisposição Genética para Doença/genética , Genótipo , Humanos , Masculino , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Linhagem , Polimorfismo de Nucleotídeo Único/genética , Superfamília Shaker de Canais de Potássio , Canais de Potássio Shal/genética , Sequenciamento do Exoma
7.
J Am Heart Assoc ; 4(9): e002159, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26330336

RESUMO

BACKGROUND: Human genetically inherited cardiac diseases have been studied mainly in heterologous systems or animal models, independent of patients' genetic backgrounds. Because sources of human cardiomyocytes (CMs) are extremely limited, the use of urine samples to generate induced pluripotent stem cell-derived CMs would be a noninvasive method to identify cardiac dysfunctions that lead to pathologies within patients' specific genetic backgrounds. The objective was to validate the use of CMs differentiated from urine-derived human induced pluripotent stem (UhiPS) cells as a new cellular model for studying patients' specific arrhythmia mechanisms. METHODS AND RESULTS: Cells obtained from urine samples of a patient with long QT syndrome who harbored the HERG A561P gene mutation and his asymptomatic noncarrier mother were reprogrammed using the episomal-based method. UhiPS cells were then differentiated into CMs using the matrix sandwich method.UhiPS-CMs showed proper expression of atrial and ventricular myofilament proteins and ion channels. They were electrically functional, with nodal-, atrial- and ventricular-like action potentials recorded using high-throughput optical and patch-clamp techniques. Comparison of HERG expression from the patient's UhiPS-CMs to the mother's UhiPS-CMs showed that the mutation led to a trafficking defect that resulted in reduced delayed rectifier K(+) current (IKr). This phenotype gave rise to action potential prolongation and arrhythmias. CONCLUSIONS: UhiPS cells from patients carrying ion channel mutations can be used as novel tools to differentiate functional CMs that recapitulate cardiac arrhythmia phenotypes.


Assuntos
Diferenciação Celular , Síndrome do QT Longo/urina , Miócitos Cardíacos/metabolismo , Células-Tronco Pluripotentes/metabolismo , Medicina de Precisão/métodos , Potenciais de Ação , Técnicas de Cultura de Células , Células Cultivadas , Técnicas de Reprogramação Celular , Canal de Potássio ERG1 , Eletrocardiografia , Canais de Potássio Éter-A-Go-Go/genética , Feminino , Predisposição Genética para Doença , Ensaios de Triagem em Larga Escala , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/patologia , Masculino , Pessoa de Meia-Idade , Mutação de Sentido Incorreto , Miócitos Cardíacos/patologia , Técnicas de Patch-Clamp , Fenótipo , Células-Tronco Pluripotentes/patologia , Urina/citologia , Adulto Jovem
8.
J Gen Physiol ; 141(4): 431-43, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23478995

RESUMO

The human ether-á-go-go-related gene (hERG) K(+) channel encodes the pore-forming α subunit of the rapid delayed rectifier current, IKr, and has unique activation gating kinetics, in that the α subunit of the channel activates and deactivates very slowly, which focuses the role of IKr current to a critical period during action potential repolarization in the heart. Despite its physiological importance, fundamental mechanistic properties of hERG channel activation gating remain unclear, including how voltage-sensor movement rate limits pore opening. Here, we study this directly by recording voltage-sensor domain currents in mammalian cells for the first time and measuring the rates of voltage-sensor modification by [2-(trimethylammonium)ethyl] methanethiosulfonate chloride (MTSET). Gating currents recorded from hERG channels expressed in mammalian tsA201 cells using low resistance pipettes show two charge systems, defined as Q(1) and Q(2), with V(1/2)'s of -55.7 (equivalent charge, z = 1.60) and -54.2 mV (z = 1.30), respectively, with the Q(2) charge system carrying approximately two thirds of the overall gating charge. The time constants for charge movement at 0 mV were 2.5 and 36.2 ms for Q(1) and Q(2), decreasing to 4.3 ms for Q(2) at +60 mV, an order of magnitude faster than the time constants of ionic current appearance at these potentials. The voltage and time dependence of Q2 movement closely correlated with the rate of MTSET modification of I521C in the outermost region of the S4 segment, which had a V(1/2) of -64 mV and time constants of 36 ± 8.5 ms and 11.6 ± 6.3 ms at 0 and +60 mV, respectively. Modeling of Q(1) and Q(2) charge systems showed that a minimal scheme of three transitions is sufficient to account for the experimental findings. These data point to activation steps further downstream of voltage-sensor movement that provide the major delays to pore opening in hERG channels.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Linhagem Celular , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/genética , Humanos , Potenciais da Membrana , Mesilatos/farmacologia , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Estrutura Terciária de Proteína , Eletricidade Estática
9.
J Gen Physiol ; 140(5): 495-511, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23071269

RESUMO

The open state of voltage-gated potassium (Kv) channels is associated with an increased stability relative to the pre-open closed states and is reflected by a slowing of OFF gating currents after channel opening. The basis for this stabilization is usually assigned to intrinsic structural features of the open pore. We have studied the gating currents of Kv1.2 channels and found that the stabilization of the open state is instead conferred largely by the presence of cations occupying the inner cavity of the channel. Large impermeant intracellular cations such as N-methyl-d-glucamine (NMG(+)) and tetraethylammonium cause severe slowing of channel closure and gating currents, whereas the smaller cation, Cs(+), displays a more moderate effect on voltage sensor return. A nonconducting mutant also displays significant open state stabilization in the presence of intracellular K(+), suggesting that K(+) ions in the intracellular cavity also slow pore closure. A mutation in the S6 segment used previously to enlarge the inner cavity (Kv1.2-I402C) relieves the slowing of OFF gating currents in the presence of the large NMG(+) ion, suggesting that the interaction site for stabilizing ions resides within the inner cavity and creates an energetic barrier to pore closure. The physiological significance of ionic occupation of the inner cavity is underscored by the threefold slowing of ionic current deactivation in the wild-type channel compared with Kv1.2-I402C. The data suggest that internal ions, including physiological concentrations of K(+), allosterically regulate the deactivation kinetics of the Kv1.2 channel by impairing pore closure and limiting the return of voltage sensors. This may represent a primary mechanism by which Kv channel deactivation kinetics is linked to ion permeation and reveals a novel role for channel inner cavity residues to indirectly regulate voltage sensor dynamics.


Assuntos
Ativação do Canal Iônico , Canal de Potássio Kv1.2/fisiologia , Regulação Alostérica , Sequência de Aminoácidos , Animais , Cátions/metabolismo , Linhagem Celular , Césio/farmacologia , Humanos , Espaço Intracelular/química , Ativação do Canal Iônico/efeitos dos fármacos , Canal de Potássio Kv1.2/química , Canal de Potássio Kv1.2/metabolismo , Meglumina/farmacologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Potássio/metabolismo , Estrutura Terciária de Proteína , Tetraetilamônio/farmacologia
10.
J Biol Chem ; 287(43): 36158-67, 2012 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-22932893

RESUMO

Phosphatidylinositol (4,5)-bisphosphate (PIP(2)) is a phospholipid of the plasma membrane that has been shown to be a key regulator of several ion channels. Functional studies and more recently structural studies of Kir channels have revealed the major impact of PIP(2) on the open state stabilization. A similar effect of PIP(2) on the delayed rectifiers Kv7.1 and Kv11.1, two voltage-gated K(+) channels, has been suggested, but the molecular mechanism remains elusive and nothing is known on PIP(2) effect on other Kv such as those of the Shaker family. By combining giant-patch ionic and gating current recordings in COS-7 cells, and voltage-clamp fluorimetry in Xenopus oocytes, both heterologously expressing the voltage-dependent Shaker channel, we show that PIP(2) exerts 1) a gain-of-function effect on the maximal current amplitude, consistent with a stabilization of the open state and 2) a loss-of-function effect by positive-shifting the activation voltage dependence, most likely through a direct effect on the voltage sensor movement, as illustrated by molecular dynamics simulations.


Assuntos
Ativação do Canal Iônico/fisiologia , Canal de Potássio KCNQ1/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Superfamília Shaker de Canais de Potássio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Canal de Potássio KCNQ1/genética , Fosfatidilinositol 4,5-Difosfato/genética , Superfamília Shaker de Canais de Potássio/genética , Xenopus
11.
Front Pharmacol ; 3: 125, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22787448

RESUMO

Voltage-gated potassium (Kv) channels are tetramers, each subunit presenting six transmembrane segments (S1-S6), with each S1-S4 segments forming a voltage-sensing domain (VSD) and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5(L)) and of the S6 C-terminal part (S6(T)) in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5(L) is acting like a ligand binding to S6(T) to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5(L), the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP(2)), stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated) require PIP(2) to function properly, confirming its crucial importance as an ion channel cofactor. This is highlighted in cases in which an altered regulation of ion channels by PIP(2) leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP(2) and S4S5(L)), and assesses their potential physiological and pathophysiological roles.

12.
Biophys J ; 101(3): 662-70, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21806934

RESUMO

G628S is a mutation in the signature sequence that forms the selectivity filter of the human ether-a-go-go-related gene (hERG) channel (GFG) and is associated with long-QT2 syndrome. G628S channels are known to have a dominant-negative effect on hERG currents, and the mutant is therefore thought to be nonfunctional. This study aims to assess the physiological mechanism that prevents the surface-expressing G628S channels from conducting ions. We used voltage-clamp fluorimetry along with two-microelectrode voltage clamping in Xenopus oocytes to confirm that the channels express well at the surface, and to show that they are actually functional, with activation kinetics comparable to that of wild-type, and that the mutation leads to a reduced selectivity to potassium. Although ionic currents are not detected in physiological solutions, removing extracellular K(+) results in the appearance of an inward Na(+)-dependent current. Using whole-cell patch clamp in mammalian transfected cells, we demonstrate that the G628S channels conduct Na(+), but that this can be blocked by both intracellular and higher-than-physiological extracellular K(+). Using solutions devoid of K(+) allows the appearance of nA-sized Na(+) currents with activation and inactivation gating analogous to wild-type channels. The G628S channels are functionally conducting but are normally blocked by intracellular K(+).


Assuntos
Canais de Potássio Éter-A-Go-Go/química , Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico/genética , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação , Potássio/metabolismo , Sequência de Aminoácidos , Animais , Canal de Potássio ERG1 , Condutividade Elétrica , Canais de Potássio Éter-A-Go-Go/genética , Células HEK293 , Humanos , Espaço Intracelular/metabolismo , Cinética , Modelos Moleculares , Proteínas Mutantes/genética , Oócitos/metabolismo , Permeabilidade , Conformação Proteica , Sódio/metabolismo , Xenopus/genética
13.
Neurotoxicology ; 32(6): 828-35, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21684305

RESUMO

Phosphorylation by serine/threonine kinases has been described as a new mechanism for regulating the effects of insecticides on insect neuronal receptors and channels. Although insect GABA receptors are commercially important targets for insecticides (e.g. fipronil), their modulation by kinases is poorly understood and the influence of phosphorylation on insecticide sensitivity is unknown. Using the whole-cell patch-clamp technique, we investigated the modulatory effect of PKC and CaMKinase II on GABA receptor subtypes (GABAR1 and GABAR2) in DUM neurons isolated from the terminal abdominal ganglion (TAG) of Periplaneta americana. Chloride currents through GABAR2 were selectively abolished by PMA and PDBu (the PKC activators) and potentiated by Gö6983, an inhibitor of PKC. Furthermore, using KN-62, a specific CaMKinase II inhibitor, we demonstrated that CaMKinase II activation was also involved in the regulation of GABAR2 function. In addition, using CdCl(2) (the calcium channel blocker) and LOE-908, a blocker of TRPγ, we revealed that calcium influx through TRPγ played an important role in kinase activations. Comparative studies performed with CACA, a selective agonist of GABAR1 in DUM neurons confirmed the involvement of these kinases in the specific regulation of GABAR2. Furthermore, our study reported that GABAR1 was less sensitive than GABAR2 to fipronil. This was demonstrated by the biphasic concentration-response curve and the current-voltage relationship established with both GABA and CACA. Finally, we demonstrated that GABAR2 was 10-fold less sensitive to fipronil following inhibition of PKC, whereas inhibition of CaMKinase II did not alter the effect of fipronil.


Assuntos
Moduladores GABAérgicos/farmacologia , Inseticidas/farmacologia , Sistemas Neurossecretores/efeitos dos fármacos , Periplaneta/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Receptores de GABA/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Relação Dose-Resposta a Droga , Ativadores de Enzimas/farmacologia , Masculino , Potenciais da Membrana , Sistemas Neurossecretores/citologia , Sistemas Neurossecretores/enzimologia , Técnicas de Patch-Clamp , Periplaneta/enzimologia , Fosforilação , Proteína Quinase C/metabolismo , Receptores de GABA/metabolismo , Fatores de Tempo
14.
Heart Rhythm ; 8(8): 1273-80, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21376840

RESUMO

BACKGROUND: The R582C mutation is one of many Long-QT Syndrome type 2 (LQT2)-causing mutations localized to the human ether-a-go-go related gene (hERG) channel's S5-P linker subdomain, yet its specific mechanism of dysfunction has not been examined. OBJECTIVE: This study sought to characterize the biophysical properties of the congenital LQT2-causing mutation, R582C, and utilize this mutation to provide the first report of voltage-dependent fluorescence from the S5-P linker. METHODS: Properties of the R582C channels were characterized by heterologous expression in both HEK293 cells and Xenopus oocytes using a combination of patch-clamp, 2-electrode voltage-clamp, immunoblot assay, and voltage-clamp fluorimetry. RESULTS: Expression of hERG R582C was found to be deficient in HEK293 cells, yet was amenable to rescue by incubation at reduced temperature or by treatment with dofetilide. Rescued channels expressed at levels comparable to wild type (WT) channels. Kinetic differences result in decreased outward repolarizing current evoked by an action potential clamp protocol. Voltage-clamp fluorimetry experiments utilized the introduced cysteine to covalently attach a fluorescent probe (tetramethylrhodamine-5-maleimide) to the S5-P linker to directly observe conformational changes occurring due to inactivation. CONCLUSION: The major mechanism underlying pathogenicity of the R582C mutation is a trafficking deficiency, although channels also exhibit kinetic deficiencies, perhaps reflecting the position of the mutation in the pore turret. Voltage clamp fluorescence signals from R582C channels provide evidence that the hERG turret undergoes distinct conformational changes during inactivation.


Assuntos
Canais de Potássio Éter-A-Go-Go/genética , Síndrome do QT Longo/genética , DNA Complementar/genética , Canal de Potássio ERG1 , Fluorometria , Células HEK293 , Humanos , Síndrome do QT Longo/congênito , Mutação , Técnicas de Patch-Clamp/métodos , Fenetilaminas/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Transporte Proteico , Sulfonamidas/farmacologia , Transfecção
15.
Trends Pharmacol Sci ; 31(12): 587-95, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20951446

RESUMO

The K(2P) potassium channels are responsible for the background conductance observed in several tissues. Their ubiquitous localization and thus their potential implications in diseases have led to increased research on these channels over the last few years. In this review, we outline different aspects of the research on K(2P) channels and highlight some of the latest discoveries in this area. We focus on research into K(2P) channels as potential therapeutic targets in ischemia/hypoxia, depression, memory disorders, pain, cardiovascular disease and disorders of the immune system. We address the challenge of developing novel pharmacological compounds to target these channels. We also discuss the regulation of expression of the K(2P) gene in health and disease, as well as the value of assessing the expression of K(2P) channels as potential biomarkers of disease.


Assuntos
Doenças Cardiovasculares/metabolismo , Infertilidade Masculina/metabolismo , Transtornos Mentais/metabolismo , Neoplasias/metabolismo , Bloqueadores dos Canais de Potássio/uso terapêutico , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Animais , Sistemas de Liberação de Medicamentos/métodos , Dosagem de Genes , Humanos , Masculino , Camundongos , Camundongos Knockout , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/genética , Canais de Potássio/metabolismo
16.
PLoS One ; 5(5): e10876, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20526358

RESUMO

BACKGROUND: hERG channels are physiologically important ion channels which mediate cardiac repolarization as a result of their unusual gating properties. These are very slow activation compared with other mammalian voltage-gated potassium channels, and extremely rapid inactivation. The mechanism of slow activation is not well understood and is investigated here using fluorescence as a direct measure of S4 movement and pore opening. METHODS AND FINDINGS: Tetramethylrhodamine-5-maleimide (TMRM) fluorescence at E519 has been used to track S4 voltage sensor movement, and channel opening and closing in hERG channels. Endogenous cysteines (C445 and C449) in the S1-S2 linker bound TMRM, which caused a 10 mV hyperpolarization of the V((1/2)) of activation to -27.5+/-2.0 mV, and showed voltage-dependent fluorescence signals. Substitution of S1-S2 linker cysteines with valines allowed unobstructed recording of S3-S4 linker E519C and L520C emission signals. Depolarization of E519C channels caused rapid initial fluorescence quenching, fit with a double Boltzmann relationship, F-V(ON), with V((1/2)) (,1) = -37.8+/-1.7 mV, and V((1/2)) (,2) = 43.5+/-7.9 mV. The first phase, V((1/2)) (,1), was approximately 20 mV negative to the conductance-voltage relationship measured from ionic tail currents (G-V((1/2)) = -18.3+/-1.2 mV), and relatively unchanged in a non-inactivating E519C:S620T mutant (V((1/2)) = -34.4+/-1.5 mV), suggesting the fast initial fluorescence quenching tracked S4 voltage sensor movement. The second phase of rapid quenching was absent in the S620T mutant. The E519C fluorescence upon repolarization (V((1/2)) = -20.6+/-1.2, k = 11.4 mV) and L520C quenching during depolarization (V((1/2)) = -26.8+/-1.0, k = 13.3 mV) matched the respective voltage dependencies of hERG ionic tails, and deactivation time constants from -40 to -110 mV, suggesting they detected pore-S4 rearrangements related to ionic current flow during pore opening and closing. CONCLUSION: THE DATA INDICATE: 1) that rapid environmental changes occur at the outer end of S4 in hERG channels that underlie channel activation gating, and 2) that secondary slower changes reflect channel pore opening during sustained depolarizations, and channel closing upon repolarization. 3) No direct evidence was obtained of conformational changes related to inactivation from fluorophores attached at the outer end of S4.


Assuntos
Canais de Potássio Éter-A-Go-Go/metabolismo , Ativação do Canal Iônico , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Cisteína/metabolismo , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/química , Fluorescência , Humanos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Rodaminas/metabolismo , Fatores de Tempo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA