Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 160: 106737, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39298873

RESUMO

3D printing of materials which combine fracture toughness, high modulus and high strength is quite challenging. Most commercially available 3D printing resins contain a mixture of multifunctional (meth)acrylates. The resulting 3D printed materials are therefore brittle and not adapted for the preparation of denture bases. For this reason, this article focuses on toughening by incorporation of triblock copolymers in methacrylate-based materials. In a first step, three urethane dimethacrylates with various alkyl spacer length were synthesized in a one-pot two-step synthesis. Each monomer was combined with 2-phenoxyethyl methacrylate as a monofunctional monomer and a polycaprolactone-polydimethylsiloxane-polycaprolactone triblock copolymer was added as toughener. The formation of nanostructures via self-assembly was proven by small angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The addition of the triblock copolymer resulted in a strong increase in fracture toughness for all mixtures. The nature of the urethane dimethacrylate had a significant impact on fracture toughness and flexural strength and modulus of the cured materials. Most promising systems were also investigated via dynamic fatigue propagation da/dN measurements, confirming that the toughening also works under dynamic load. By carefully selecting the length of the urethane dimethacrylate spacer and the amount of block copolymer, materials with the desired physical properties could be efficiently formulated. Especially the formulation containing the medium alkyl spacer length (DMA2/PEMA) and 5 wt% BCP1 (block copolymer), exhibits excellent mechanical properties and high fracture toughness.

2.
Dent Mater ; 40(8): 1191-1198, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38851966

RESUMO

OBJECTIVES: Hydroperoxides are key constituents of two-component dental materials. The objective of this study was to evaluate the influence of the hydroperoxide structure on the reactivity and on the mechanical properties of self-cure composites. METHODS: Hydroperoxides HP1-3 were synthesized by selective catalytic oxidation of the corresponding para-substituted cumene precursors and isolated in high purity. They were characterized by 1H NMR and 13C NMR spectroscopy. 16 self-cure composites, based on the redox initiator system hydroperoxide (Cumene hydroperoxide (CHP), HP1-3 or tert.-Amyl hydroperoxide (TAH))/polymerizable thiourea ATU1/copper(II) acetylacetonate, were formulated in Sulzer Mixpac two-component syringes. An equimolar hydroperoxide/ATU1 ratio was selected for each self-cure composite. The reactivity and the final double-bond conversions obtained with these two-component materials was assessed using RT-FTIR spectroscopy. The flexural strength and modulus were measured using a three-point bending setup, after storage of the specimens for 45 min at 37 °C (dry) and for 24 h in water at 37 °C. The working time of each self-cure composite was measured using an oscillating rheometer. RESULTS: CHP derivatives bearing an electron withdrawing group (HP2: ester or HP3: nitrile) in the para position were found to be more reactive than CHP, whereas the compound bearing an electron donating group (tert-butyl, HP1) was less reactive; molecular modelling data were reported for a better understanding of this structure/reactivity/efficiency relationship. All CHP derivatives were more reactive than the aliphatic hydroperoxide TAH. Excellent mechanical properties were obtained with self-cure composites containing either CHP or a para-functionalized CHP derivative. By carefully selecting the amounts of oxidizing/reducing agents and metal catalyst, suitable working times can be obtained with all evaluated hydroperoxides. HP3, thanks to its high reactivity, is nonetheless the most promising compound. SIGNIFICANCE: The curing rate of self-cure composites can be adapted by modifying the structure of the hydroperoxide. In agreement with molecular modelling data, the incorporation of CHP derivatives bearing an electron withdrawing group in the para position is particularly attractive. Indeed, due to a significant reactivity enhancement, the desired properties (working time, flexural strength/modulus) can be obtained by incorporating moderate amounts of hydroperoxide/acylthiourea as well as particularly low contents of metal catalyst to the two-component dental materials.


Assuntos
Resinas Compostas , Peróxido de Hidrogênio , Teste de Materiais , Resinas Compostas/química , Peróxido de Hidrogênio/química , Resistência à Flexão , Espectroscopia de Infravermelho com Transformada de Fourier , Estrutura Molecular , Derivados de Benzeno/química , Módulo de Elasticidade , Materiais Dentários/química , Oxirredução , Espectroscopia de Ressonância Magnética , Polimerização
3.
Dent Mater ; 39(10): 886-893, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37591708

RESUMO

OBJECTIVES: Currently used thiourea-based two-component dental materials may release bitter compounds if they are not properly cured. To address this issue, the objective of this study was to evaluate the potential of acylthiourea oligomers as reducing agents for the development of self-cure composites. METHODS: Acylthiourea oligomers ATUO1-3 were synthesized via cotelomerization of the acylthiourea methacrylate ATU1 with butyl methacrylate. They were characterized by 1H NMR spectroscopy and size exclusion chromatography. Self-cure composites based on the redox initiator system cumene hydroperoxide/acylthiourea oligomer/copper(II) acetylacetonate were formulated. The flexural strength and modulus were measured using a three-point bending setup. The double bond conversions were determined using NIR spectroscopy. The working time of each self-cure composite was measured using an oscillating rheometer. Leaching experiments using light-cure composites were performed in DMSO-d6. RESULTS: Acylthiourea oligomers ATUO1-3 were successfully synthesized in good yields. Both the oligomer molecular weight and the amount of thiourea groups were varied. Self-cure composites containing ATUO1 or ATUO2 as reducing agents exhibited excellent mechanical properties and high double-bond conversions. The amounts of reducing agent, cumene hydroperoxide and copper(II) acetylacetonate were shown to have a significant impact on the working time. Moreover, a correlation between flexural modulus and the amount of metal salt was clearly established. Self-cure composites containing the oligomer ATUO1 exhibited a longer working time than materials containing ATU1 or acetylthiourea. Contrary to acetylthiourea, ATUO1 was not able to leach out of light-cured composites. SIGNIFICANCE: Acylthiourea oligomers are promising reducing agents for the formulation of two-component dental materials that do not induce a bitter taste in mouth.


Assuntos
Resinas Compostas , Substâncias Redutoras , Resinas Compostas/química , Teste de Materiais , Metacrilatos/química , Tioureia , Materiais Dentários/química , Maleabilidade , Bis-Fenol A-Glicidil Metacrilato/química , Ácidos Polimetacrílicos/química
4.
Dent Mater ; 38(7): 1108-1116, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35589440

RESUMO

OBJECTIVE: To evaluate polymerizable acylthioureas as reducing agents in two-component dental materials. METHODS: Acylthioureas 1 and 2 were synthesized and characterized by 1H and 13C NMR spectroscopy. Self-cured composites based on the redox initiator system cumene hydroperoxide/acylthiourea 1 or 2/copper(II) acetylacetonate were formulated. Various amounts of cumene hydroperoxide, acylthiourea and copper(II) acetylacetonate were used. An equimolar cumene hydroperoxide/acylthiourea ratio was selected for each self-cured composite. The reactivity and the final double-bond conversions obtained with these two-component materials was assessed using RT-FTIR spectroscopy. The flexural strength and modulus were measured using a three-point bending setup, after storage of the specimens for 45 min at 37 °C (dry) and for 24 h in water at 37 °C. The working time of each composite was determined using an oscillating rheometer. RESULTS: Acylthioureas 1 and 2 were synthesized in three to four steps. In combination with cumene hydroperoxide and copper(II) acetylacetonate, both prepared compounds were found to be effective reducing agents. The higher the amount of cumene hydroperoxide and acylthiourea in the self-cured composite, the higher the flexural modulus and the faster the polymerization (lower working times). Similarly, it was shown that increased copper(II) acetylacetonate amounts result in an acceleration of the curing as well as in an improvement of the mechanical properties. The self-cured composite containing 1.25 wt% of cumene hydroperoxide in the monomer mixture of the first paste and 2.00 wt% of acylthiourea 1 in the monomer mixture of the second one provided excellent mechanical properties as well as an optimal working time. SIGNIFICANCE: Polymerizable acylthioureas can be used as reducing agents in two-component dental materials. Due to the presence of the methacrylate group, such structures should be efficiently incorporated into the network during polymerization and should not leach out of the composite after curing. As a result, such dental materials are not expected to exhibit bitterness properties.


Assuntos
Resinas Compostas , Substâncias Redutoras , Bis-Fenol A-Glicidil Metacrilato/química , Resinas Compostas/química , Materiais Dentários/química , Teste de Materiais , Metacrilatos/química , Maleabilidade , Polimerização , Tioureia
5.
ACS Macro Lett ; 7(2): 132-136, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-35610907

RESUMO

We introduce a method for the a priori prediction of mass spectra of complex poly(methyl methacrylate)s initiated by photoinitiators featuring multiple cleavage points. The method is based on permutation mathematics using multinomial coefficients to predict the probability of each poly(methyl methacrylate) species' isotopic pattern contribution to the overall mass spectrum. The method assumes a statistical behavior for the cleavage of the photoinitiator. The excellent agreement of the predicted mass spectrum based on multinomial coefficients with the experimental mass spectrum confirms a multipoint cleavage mechanism of the assessed photoinitiators. We exemplify our method for the prediction of mass spectra of poly(methyl methacrylate)s initiated by four tetraacylgermane derivates and one bisacylgermane, recorded after visible light pulsed-laser polymerization by high resolution Orbitrap electrospray ionization mass spectrometry (ESI-MS). The excellent agreement of our approach with experimental data suggests that a wide array of polymer mass spectra of polymers initiated by initiators capable of multiple cleavage events can be quantitatively predicted.

6.
Chemphyschem ; 17(21): 3460-3469, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27633161

RESUMO

In the present study, a selection of basic substitution patterns on benzoyl(trimethyl)germane was investigated using time-dependent density-functional theory (TDDFT) to explore the influence on the stability and on the relative order of the lowest excited electronic states. The theoretical results are in agreement with absorption and fluorescence measurements. We show that electron-withdrawing groups decrease the energetic level of the lowest singlet and triplet state relative to the electron-pushing systems resulting in red-shifted radiative transitions (fluorescence). In the first triplet state electron-withdrawing groups lead to an increased dissociation barrier and a close approach with the singlet ground state before the transition state in the triplet state is reached, favoring radiationless ground-state recovery. The results are also in good agreement with empirical concepts of organic chemistry, therefore providing simple rules for synthetic strategies towards tuning the excited-state properties of benzoylgermanes.

7.
Beilstein J Org Chem ; 6: 26, 2010 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20502649

RESUMO

Because of the poor solubility of the commercially available bisacylphosphine oxides in dental acidic aqueous primer formulations, bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine oxide (WBAPO) was synthesized starting from 3-(chloromethyl)-2,4,6-trimethylbenzoic acid by the dichlorophosphine route. The substituent was introduced by etherification with 2-(allyloxy)ethanol. In the second step, 3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoic acid was chlorinated. The formed acid chloride showed an unexpected low thermal stability. Its thermal rearrangement at 180 ° C resulted in a fast formation of 3-(chloromethyl)-2,4,6-trimethylbenzoic acid 2-(allyloxy)ethyl ester. In the third step, the acid chloride was reacted with phenylphosphine dilithium with the formation of bis(3-{[2-(allyloxy)ethoxy]methyl}-2,4,6-trimethylbenzoyl)(phenyl)phosphine, which was oxidized to WBAPO. The structure of WBAPO was confirmed by ¹H NMR, ¹³C NMR, ³¹P NMR, and IR spectroscopy, as well as elemental analysis. WBAPO, a yellow liquid, possesses improved solubility in polar solvents and shows UV-vis absorption, and a high photoreactivity comparable with the commercially available bisacylphosphine oxides. A sufficient storage stability was found in dental acidic aqueous primer formulations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA