Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Radiat Res ; 191(1): 76-92, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30407901

RESUMO

Our understanding of radiation-induced cellular damage has greatly improved over the past few decades. Despite this progress, there are still many obstacles to fully understand how radiation interacts with biologically relevant cellular components, such as DNA, to cause observable end points such as cell killing. Damage in DNA is identified as a major route of cell killing. One hurdle when modeling biological effects is the difficulty in directly comparing results generated by members of different research groups. Multiple Monte Carlo codes have been developed to simulate damage induction at the DNA scale, while at the same time various groups have developed models that describe DNA repair processes with varying levels of detail. These repair models are intrinsically linked to the damage model employed in their development, making it difficult to disentangle systematic effects in either part of the modeling chain. These modeling chains typically consist of track-structure Monte Carlo simulations of the physical interactions creating direct damages to DNA, followed by simulations of the production and initial reactions of chemical species causing so-called "indirect" damages. After the induction of DNA damage, DNA repair models combine the simulated damage patterns with biological models to determine the biological consequences of the damage. To date, the effect of the environment, such as molecular oxygen (normoxic vs. hypoxic), has been poorly considered. We propose a new standard DNA damage (SDD) data format to unify the interface between the simulation of damage induction in DNA and the biological modeling of DNA repair processes, and introduce the effect of the environment (molecular oxygen or other compounds) as a flexible parameter. Such a standard greatly facilitates inter-model comparisons, providing an ideal environment to tease out model assumptions and identify persistent, underlying mechanisms. Through inter-model comparisons, this unified standard has the potential to greatly advance our understanding of the underlying mechanisms of radiation-induced DNA damage and the resulting observable biological effects when radiation parameters and/or environmental conditions change.


Assuntos
Dano ao DNA , Simulação por Computador , Reparo do DNA , Transferência Linear de Energia , Modelos Teóricos , Método de Monte Carlo
2.
Med Phys ; 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29901835

RESUMO

This Special Report presents a description of Geant4-DNA user applications dedicated to the simulation of track structures (TS) in liquid water and associated physical quantities (e.g., range, stopping power, mean free path…). These example applications are included in the Geant4 Monte Carlo toolkit and are available in open access. Each application is described and comparisons to recent international recommendations are shown (e.g., ICRU, MIRD), when available. The influence of physics models available in Geant4-DNA for the simulation of electron interactions in liquid water is discussed. Thanks to these applications, the authors show that the most recent sets of physics models available in Geant4-DNA (the so-called "option4" and "option 6" sets) enable more accurate simulation of stopping powers, dose point kernels, and W-values in liquid water, than the default set of models ("option 2") initially provided in Geant4-DNA. They also serve as reference applications for Geant4-DNA users interested in TS simulations.

3.
Phys Med ; 32(12): 1833-1840, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27773539

RESUMO

A new alternative set of elastic and inelastic cross sections has been added to the very low energy extension of the Geant4 Monte Carlo simulation toolkit, Geant4-DNA, for the simulation of electron interactions in liquid water. These cross sections have been obtained from the CPA100 Monte Carlo track structure code, which has been a reference in the microdosimetry community for many years. They are compared to the default Geant4-DNA cross sections and show better agreement with published data. In order to verify the correct implementation of the CPA100 cross section models in Geant4-DNA, simulations of the number of interactions and ranges were performed using Geant4-DNA with this new set of models, and the results were compared with corresponding results from the original CPA100 code. Good agreement is observed between the implementations, with relative differences lower than 1% regardless of the incident electron energy. Useful quantities related to the deposited energy at the scale of the cell or the organ of interest for internal dosimetry, like dose point kernels, are also calculated using these new physics models. They are compared with results obtained using the well-known Penelope Monte Carlo code.


Assuntos
DNA/química , Elétrons , Método de Monte Carlo , Fenômenos Físicos , Água/química
4.
Clin Podiatr Med Surg ; 13(3): 575-87, 1996 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-8829042

RESUMO

Well-designated research is required to provide clinical guidance by validation of old and new methods. Variables, including technologic advancement in surgical techniques, diagnosis, shoe design, and immobilization all contribute to the challenge of investigating surgical procedures of the foot. This article highlights some of the relevant research pertaining to first metatarsal osteotomies and internal fixation and provides direction for potential, future research. Numerous aspects about the research techniques involved are discussed.


Assuntos
Deformidades do Pé/cirurgia , Ossos do Metatarso/cirurgia , Osteotomia/métodos , Fenômenos Biomecânicos , Humanos , Fixadores Internos , Modelos Biológicos , Osteotomia/efeitos adversos , Osteotomia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA