Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 979298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051915

RESUMO

Modern medicine increases the demand for safe blood products. Ex vivo cultured red blood cells (cRBC) are eagerly awaited as a standardized, safe source of RBC. Established culture models still lack the terminal cytoskeletal remodeling from reticulocyte to erythrocyte with changes in the biomechanical properties and interacts with membrane stiffness, viscosity of the cytoplasm and the cytoskeletal network. Comprehensive data on the biomechanical properties of cRBC are needed to take the last step towards translation into clinical use in transfusion medicine. Aim of the study was the comparative analysis of topographical and biomechanical properties of cRBC, generated from human CD34+ adult hematopoietic stem/progenitor cells, with native reticulocytes (nRET) and erythrocytes (nRBC) using cell biological and biomechanical technologies. To gain the desired all-encompassing information, a single method was unsatisfactory and only the combination of different methods could lead to the goal. Topographical information was matched with biomechanical data from optical tweezers (OT), atomic force microscopy (AFM) and digital holographic microscopy (DHM). Underlying structures were investigated in detail. Imaging, deformability and recovery time showed a high similarity between cRBC and nRBC. Young's modulus and plasticity index also confirmed this similarity. No significant differences in membrane and cytoskeletal proteins were found, while lipid deficiency resulted in spherical, vesiculated cells with impaired biomechanical functionality. The combination of techniques has proven successful and experiments underscore a close relationship between lipid content, shape and biomechanical functionality of RBC.

2.
Cells ; 11(16)2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-36010549

RESUMO

Cultured red blood cells from human induced pluripotent stem cells (cRBC_iPSCs) are a promising source for future concepts in transfusion medicine. Before cRBC_iPSCs will have entrance into clinical or laboratory use, their functional properties and safety have to be carefully validated. Due to the limitations of established culture systems, such studies are still missing. Improved erythropoiesis in a recently established culture system, closer simulating the physiological niche, enabled us to conduct functional characterization of enucleated cRBC_iPSCs with a focus on membrane properties. Morphology and maturation stage of cRBC_iPSCs were closer to native reticulocytes (nRETs) than to native red blood cells (nRBCs). Whereas osmotic resistance of cRBC_iPSCs was similar to nRETs, their deformability was slightly impaired. Since no obvious alterations in membrane morphology, lipid composition, and major membrane associated protein patterns were observed, reduced deformability might be caused by a more primitive nature of cRBC_iPSCs comparable to human embryonic- or fetal liver erythropoiesis. Blood group phenotyping of cRBC_iPSCs further confirmed the potency of cRBC_iPSCs as a prospective device in pre-transfusional routine diagnostics. Therefore, RBC membrane analyses obtained in this study underscore the overall prospects of cRBC_iPSCs for their future application in the field of transfusion medicine.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/fisiologia , Eritrócitos/metabolismo , Eritropoese , Humanos , Estudos Prospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA