Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(1): pgad483, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38222466

RESUMO

The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions across broad-based energy and economic sectors and the impacts persisted to 2021. Compared with 2019 business-as-usual emission scenario, COVID-19 perturbations resulted in annual decreases of 10-15% in emissions of ozone (O3) and fine particle (PM2.5) gas-phase precursors, which are about two to four times larger than long-term annual trends during 2010-2019. While significant COVID-induced reductions in transportation and industrial activities, particularly in April-June 2020, resulted in overall national decreases in air pollutants, meteorological variability across the nation led to local increases or decreases of air pollutants, and mixed air quality changes across the United States between 2019 and 2020. Over a full year (April 2020 to March 2021), COVID-induced emission reductions led to 3-4% decreases in national population-weighted annual fourth maximum of daily maximum 8-h average O3 and annual PM2.5. Assuming these emission reductions could be maintained in the future, the result would be a 4-5% decrease in premature mortality attributable to ambient air pollution, suggesting that continued efforts to mitigate gaseous pollutants from anthropogenic sources can further protect human health from air pollution in the future.

2.
Environ Sci Technol ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36607321

RESUMO

Increasing trends in biomass burning emissions significantly impact air quality in North America. Enhanced mixing ratios of ozone (O3) in urban areas during smoke-impacted periods occur through transport of O3 produced within the smoke or through mixing of pyrogenic volatile organic compounds (PVOCs) with urban nitrogen oxides (NOx = NO + NO2) to enhance local O3 production. Here, we analyze a set of detailed chemical measurements, including carbon monoxide (CO), NOx, and speciated volatile organic compounds (VOCs), to evaluate the effects of smoke transported from relatively local and long-range fires on O3 measured at a site in Boulder, Colorado, during summer 2020. Relative to the smoke-free period, CO, background O3, OH reactivity, and total VOCs increased during both the local and long-range smoke periods, but NOx mixing ratios remained approximately constant. These observations are consistent with transport of PVOCs (comprised primarily of oxygenates) but not NOx with the smoke and with the influence of O3 produced within the smoke upwind of the urban area. Box-model calculations show that local O3 production during all three periods was in the NOx-sensitive regime. Consequently, this locally produced O3 was similar in all three periods and was relatively insensitive to the increase in PVOCs. However, calculated NOx sensitivities show that PVOCs substantially increase O3 production in the transition and NOx-saturated (VOC-sensitive) regimes. These results suggest that (1) O3 produced during smoke transport is the main driver for O3 increases in NOx-sensitive urban areas and (2) smoke may cause an additional increase in local O3 production in NOx-saturated (VOC-sensitive) urban areas. Additional detailed VOC and NOx measurements in smoke impacted urban areas are necessary to broadly quantify the effects of wildfire smoke on urban O3 and develop effective mitigation strategies.

3.
Environ Sci Technol ; 56(12): 7564-7577, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35579536

RESUMO

Carbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements. Here, we present a novel method to estimate fire plume-integrated total carbon and speciated emission rates using a unique combination of lidar remote sensing aerosol extinction profiles and in situ measured carbon constituents. We show strong agreement between these aircraft-derived emission rates of total carbon and a detailed burned area-based inventory that distributes carbon emissions in time using Geostationary Operational Environmental Satellite FRP observations (Fuel2Fire inventory, slope = 1.33 ± 0.04, r2 = 0.93, and RMSE = 0.27). Other more commonly used inventories strongly correlate with aircraft-derived emissions but have wide-ranging over- and under-predictions. A strong correlation is found between carbon monoxide emissions estimated in situ with those derived from the TROPOspheric Monitoring Instrument (TROPOMI) for five wildfires with coincident sampling windows (slope = 0.99 ± 0.18; bias = 28.5%). Smoke emission coefficients (g MJ-1) enable direct estimations of primary gas and aerosol emissions from satellite FRP observations, and we derive these values for many compounds emitted by temperate forest fuels, including several previously unreported species.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Incêndios Florestais , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Gases , Tecnologia de Sensoriamento Remoto
4.
Sci Adv ; 7(50): eabl3648, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878847

RESUMO

Wildfires are a substantial but poorly quantified source of tropospheric ozone (O3). Here, to investigate the highly variable O3 chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O3 production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O3 chemistry exhibits rapid transition in chemical regimes. Within a few daylight hours, the O3 formation substantially slows and is largely limited by the abundance of nitrogen oxides (NOx). This finding supports previous observations that O3 formation is enhanced when VOC-rich wildfire smoke mixes into NOx-rich urban plumes, thereby deteriorating urban air quality. Last, we relate O3 chemistry to the underlying fire characteristics, enabling a more accurate representation of wildfire chemistry in atmospheric models that are used to study air quality and predict climate.

5.
Environ Sci Technol ; 55(15): 10280-10290, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34255503

RESUMO

Understanding the efficiency and variability of photochemical ozone (O3) production from western wildfire plumes is important to accurately estimate their influence on North American air quality. A set of photochemical measurements were made from the NOAA Twin Otter research aircraft as a part of the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) experiment. We use a zero-dimensional (0-D) box model to investigate the chemistry driving O3 production in modeled plumes. Modeled afternoon plumes reached a maximum O3 mixing ratio of 140 ± 50 ppbv (average ± standard deviation) within 20 ± 10 min of emission compared to 76 ± 12 ppbv in 60 ± 30 min in evening plumes. Afternoon and evening maximum O3 isopleths indicate that plumes were near their peak in NOx efficiency. A radical budget describes the NOx volatile - organic compound (VOC) sensitivities of these plumes. Afternoon plumes displayed a rapid transition from VOC-sensitive to NOx-sensitive chemistry, driven by HOx (=OH + HO2) production from photolysis of nitrous acid (HONO) (48 ± 20% of primary HOx) and formaldehyde (HCHO) (26 ± 9%) emitted directly from the fire. Evening plumes exhibit a slower transition from peak NOx efficiency to VOC-sensitive O3 production caused by a reduction in photolysis rates and fire emissions. HOx production in evening plumes is controlled by HONO photolysis (53 ± 7%), HCHO photolysis (18 ± 9%), and alkene ozonolysis (17 ± 9%).


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Incêndios Florestais , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental , Ozônio/análise , Fotoquímica
6.
Environ Pollut ; 249: 518-526, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30933751

RESUMO

Nail salon technicians face chronic exposure to volatile organic compounds (VOCs), which can lead to adverse health outcomes including cancer. In this study, indoor levels of formaldehyde, as well as benzene, toluene, ethylbenzene and xylene, were measured in 6 Colorado nail salons. Personal exposure VOC measurements and health questionnaires (n = 20) were also performed; questionnaires included employee demographics, health symptoms experienced, and protective equipment used. Cancer slope factors from the United States Environmental Protection Agency (US EPA) and anthropometric data from the Centers for Disease Control and Prevention were then used to estimate cancer risk for workers, assuming 20-yr exposures to concentrations of benzene and formaldehyde reported here. Results show that 70% of surveyed workers experienced at least one health issue related to their employment, with many reporting multiple related symptoms. Indoor concentrations of formaldehyde ranged from 5.32 to 20.6 µg m-3, across all 6 salons. Indoor concentrations of toluene ranged from 26.7 to 816 µg m-3, followed by benzene (3.13-51.8 µg m-3), xylenes (5.16-34.6 µg m-3), and ethylbenzene (1.65-9.52 µg m-3). Formaldehyde levels measured in one salon exceeded the Recommended Exposure Limit from the National Institute for Occupational Safety and Health. Cancer risk estimates from formaldehyde exposure exceeded the US EPA de minimis risk level (1 × 10-6) for squamous cell carcinoma, nasopharyngeal cancer, Hodgkin's lymphoma, and leukemia; leukemia risk exceeded 1 × 10-4 in one salon. The average leukemia risk from benzene exposure also exceeded the US EPA de minimis risk level for all demographic categories modeled. In general, concentrations of aromatic compounds measured here were comparable to those measured in studies of oil refinery and auto garage workers. Cancer risk models determined that 20-yr exposure to formaldehyde and benzene concentrations measured in this study will significantly increase worker's risk of developing cancer in their lifetime.


Assuntos
Poluentes Atmosféricos/análise , Indústria da Beleza , Monitoramento Ambiental/métodos , Exposição Ocupacional/análise , Compostos Orgânicos Voláteis/análise , Adulto , Benzeno/análise , Derivados de Benzeno/análise , Colorado , Formaldeído/efeitos adversos , Formaldeído/análise , Humanos , Neoplasias Nasofaríngeas/induzido quimicamente , Hipersensibilidade Respiratória , Inquéritos e Questionários , Tolueno/análise , Estados Unidos , United States Environmental Protection Agency , Xilenos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA