Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 31(10): 1152-60, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21964478

RESUMO

The Castanea sativa SCL1 gene (CsSCL1) has previously been shown to be induced by auxin during adventitious root (AR) formation in rooting-competent microshoots. However, its expression has not previously been analyzed in rooting-incompetent shoots. This study focuses on the regulation of CsSCL1 during maturation and the role of the gene in the formation of AR. The expression of CsSCL1 in rooting-incompetent microshoots and other tissues was investigated by quantitative reverse transcriptase--polymerase chain reaction. The analysis was complemented by in situ hybridization of the basal segments of rooting-competent and --incompetent microshoots during AR induction, as well as in AR and lateral roots. It was found that CsSCL1 is upregulated by auxin in a cell-type- and phase-dependent manner during the induction of AR. In root-forming shoots, CsSCL1 mRNA was specifically located in the cambial zone and derivative cells, which are rooting-competent cells, whereas in rooting-incompetent shoots the hybridization signal was more diffuse and evenly distributed through the phloem and parenchyma. CsSCL1 expression was also detected in lateral roots and axillary buds. The different CsSCL1 expression patterns in rooting-competent and -incompetent microshoots, together with the specific location of transcripts in cell types involved in root meristem initiation and in the root primordia of AR and lateral roots, indicate an important role for the gene in determining whether certain cells will enter the root differentiation pathway and its involvement in meristem maintenance.


Assuntos
Fagaceae/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Fagaceae/crescimento & desenvolvimento , RNA Mensageiro/metabolismo
2.
Plant Cell Rep ; 28(10): 1531-8, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19652972

RESUMO

In eukaryotes, trithorax group proteins play critical roles in the regulation of transcription, cell proliferation, differentiation and development. In this work we report the molecular cloning and characterization of SEPR11, a cDNA from the conifer Monterrey pine (Pinus radiata) encoding a polypeptide homologue of a trithorax group member described in animals and yeast. A full-length clone was isolated from RNA prepared from somatic embryos and contained a 1,239 bp ORF encoding 412 amino acids. Characterization of the isolated sequence revealed that it contains a SPRY domain in the C-terminal region. A comparison of the pine sequence with homologous proteins from plants, animals and yeast revealed that SEPR11 is phylogenetically related to the trithorax group members and not a SPRY-domain containing protein. RT-PCR analyses of transcript abundance in pine tissues demonstrated that SEPR11 is particularly abundant in embryos, suggesting that this gene could be involved during embryo development. The spatial localization of SEPR11 transcripts revealed that gene expression was restricted to the vascular bundle and apical and radicular meristems, suggesting a possible function of this gene in meristem control and vascular bundle development. This work is the first report of the presence of a trithorax group homologue gene in gymnosperm.


Assuntos
Pinus/genética , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Dados de Sequência Molecular , Pinus/metabolismo , Proteínas de Plantas/genética , RNA de Plantas/genética , Alinhamento de Sequência , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA