Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 137(1): 1-9, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38695352

RESUMO

We tested whether spontaneous physical activity (SPA) from accelerometers could be used in a whole room calorimeter to estimate thermic effect of food (TEF). Eleven healthy participants (n = 7 females; age: 27 ± 4 yr; body mass index: 22.8 ± 2.6 kg/m2) completed two 23-h visits in randomized order: one "fed" with meals provided and one "fasted" with no food. SPA was measured by ActivPAL and Actigraph accelerometers. Criterion TEF was calculated as the difference in total daily energy expenditure (TDEE) between fed and fasted visits and compared with three methods of estimating TEF: 1) SPA-adjusted TEF (adjTEF)-difference in TDEE without SPA between visits, 2) Wakeful TEF-difference in energy expenditure obtained from linear regression and basal metabolic rate during waking hours, 3) 24-h TEF-increase in TDEE above SPA and sleeping metabolic rate. Criterion TEF was 9.4 ± 4.5% of TDEE. AdjTEF (difference in estimated vs. criterion TEF: activPAL: -0.3 ± 3.3%; Actigraph: -1.8 ± 8.0%) and wakeful TEF (activPAL: -0.9 ± 6.1%; Actigraph: -2.8 ± 7.6%) derived from both accelerometers did not differ from criterion TEF (all P > 0.05). ActivPAL-derived 24-h TEF overestimated TEF (6.8 ± 5.4%, P = 0.002), whereas Actigraph-derived 24-h TEF was not significantly different (4.3 ± 9.4%, P = 0.156). TEF estimations using activPAL tended to show better individual-level agreement (i.e., smaller coefficients of variation). Both accelerometers can be used to estimate TEF in a whole room calorimeter; wakeful TEF using activPAL is the most viable option given strong group-level accuracy and reasonable individual agreement.NEW & NOTEWORTHY Two research-grade accelerometers can effectively estimate spontaneous physical activity and improve the estimation of thermic effect of food (TEF) in whole room calorimeters. The activPAL demonstrates strong group-level accuracy and reasonable individual-level agreement in estimating wakeful TEF, whereas a hip-worn Actigraph is an acceptable approach for estimating 24-h TEF. These results highlight the promising potential of accelerometers in advancing energy balance research by improving the assessment of TEF within whole room calorimeters.


Assuntos
Acelerometria , Metabolismo Energético , Exercício Físico , Humanos , Feminino , Adulto , Masculino , Acelerometria/métodos , Acelerometria/instrumentação , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Calorimetria/métodos , Adulto Jovem , Jejum/fisiologia , Calorimetria Indireta/métodos , Metabolismo Basal/fisiologia , Alimentos
2.
Sensors (Basel) ; 24(10)2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38793899

RESUMO

Metabolic syndrome poses a significant health challenge worldwide, prompting the need for comprehensive strategies integrating physical activity monitoring and energy expenditure. Wearable sensor devices have been used both for energy intake and energy expenditure (EE) estimation. Traditionally, sensors are attached to the hip or wrist. The primary aim of this research is to investigate the use of an eyeglass-mounted wearable energy intake sensor (Automatic Ingestion Monitor v2, AIM-2) for simultaneous recognition of physical activity (PAR) and estimation of steady-state EE as compared to a traditional hip-worn device. Study data were collected from six participants performing six structured activities, with the reference EE measured using indirect calorimetry (COSMED K5) and reported as metabolic equivalents of tasks (METs). Next, a novel deep convolutional neural network-based multitasking model (Multitasking-CNN) was developed for PAR and EE estimation. The Multitasking-CNN was trained with a two-step progressive training approach for higher accuracy, where in the first step the model for PAR was trained, and in the second step the model was fine-tuned for EE estimation. Finally, the performance of Multitasking-CNN on AIM-2 attached to eyeglasses was compared to the ActiGraph GT9X (AG) attached to the right hip. On the AIM-2 data, Multitasking-CNN achieved a maximum of 95% testing accuracy of PAR, a minimum of 0.59 METs mean square error (MSE), and 11% mean absolute percentage error (MAPE) in EE estimation. Conversely, on AG data, the Multitasking-CNN model achieved a maximum of 82% testing accuracy in PAR, a minimum of 0.73 METs MSE, and 13% MAPE in EE estimation. These results suggest the feasibility of using an eyeglass-mounted sensor for both PAR and EE estimation.


Assuntos
Metabolismo Energético , Exercício Físico , Óculos , Redes Neurais de Computação , Dispositivos Eletrônicos Vestíveis , Humanos , Metabolismo Energético/fisiologia , Exercício Físico/fisiologia , Adulto , Masculino , Calorimetria Indireta/instrumentação , Calorimetria Indireta/métodos , Feminino , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos
3.
Proc Natl Acad Sci U S A ; 121(19): e2311116121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683977

RESUMO

Conventionally, women are perceived to feel colder than men, but controlled comparisons are sparse. We measured the response of healthy, lean, young women and men to a range of ambient temperatures typical of the daily environment (17 to 31 °C). The Scholander model of thermoregulation defines the lower critical temperature as threshold of the thermoneutral zone, below which additional heat production is required to defend core body temperature. This parameter can be used to characterize the thermoregulatory phenotypes of endotherms on a spectrum from "arctic" to "tropical." We found that women had a cooler lower critical temperature (mean ± SD: 21.9 ± 1.3 °C vs. 22.9 ± 1.2 °C, P = 0.047), resembling an "arctic" shift compared to men. The more arctic profile of women was predominantly driven by higher insulation associated with more body fat compared to men, countering the lower basal metabolic rate associated with their smaller body size, which typically favors a "tropical" shift. We did not detect sex-based differences in secondary measures of thermoregulation including brown adipose tissue glucose uptake, muscle electrical activity, skin temperatures, cold-induced thermogenesis, or self-reported thermal comfort. In conclusion, the principal contributors to individual differences in human thermoregulation are physical attributes, including body size and composition, which may be partly mediated by sex.


Assuntos
Regulação da Temperatura Corporal , Humanos , Feminino , Masculino , Regulação da Temperatura Corporal/fisiologia , Adulto , Regiões Árticas , Adulto Jovem , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Marrom/metabolismo , Caracteres Sexuais , Fatores Sexuais , Temperatura Corporal/fisiologia , Termogênese/fisiologia , Metabolismo Basal/fisiologia
4.
Nat Commun ; 15(1): 907, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383456

RESUMO

Post-infectious myalgic encephalomyelitis/chronic fatigue syndrome (PI-ME/CFS) is a disabling disorder, yet the clinical phenotype is poorly defined, the pathophysiology is unknown, and no disease-modifying treatments are available. We used rigorous criteria to recruit PI-ME/CFS participants with matched controls to conduct deep phenotyping. Among the many physical and cognitive complaints, one defining feature of PI-ME/CFS was an alteration of effort preference, rather than physical or central fatigue, due to dysfunction of integrative brain regions potentially associated with central catechol pathway dysregulation, with consequences on autonomic functioning and physical conditioning. Immune profiling suggested chronic antigenic stimulation with increase in naïve and decrease in switched memory B-cells. Alterations in gene expression profiles of peripheral blood mononuclear cells and metabolic pathways were consistent with cellular phenotypic studies and demonstrated differences according to sex. Together these clinical abnormalities and biomarker differences provide unique insight into the underlying pathophysiology of PI-ME/CFS, which may guide future intervention.


Assuntos
Doenças Transmissíveis , Síndrome de Fadiga Crônica , Humanos , Síndrome de Fadiga Crônica/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Transmissíveis/metabolismo , Biomarcadores/metabolismo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA