Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Discov ; 10(1): 30, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485705

RESUMO

The human organic cation transporter 1 (hOCT1), also known as SLC22A1, is integral to hepatic uptake of structurally diversified endogenous and exogenous organic cations, influencing both metabolism and drug pharmacokinetics. hOCT1 has been implicated in the therapeutic dynamics of many drugs, making interactions with hOCT1 a key consideration in novel drug development and drug-drug interactions. Notably, metformin, the frontline medication for type 2 diabetes, is a prominent hOCT1 substrate. Conversely, hOCT1 can be inhibited by agents such as spironolactone, a steroid analog inhibitor of the aldosterone receptor, necessitating a deep understanding of hOCT1-drug interactions in the development of new pharmacological treatments. Despite extensive study, specifics of hOCT1 transport and inhibition mechanisms remain elusive at the molecular level. Here, we present cryo-electron microscopy structures of the hOCT1-metformin complex in three distinct conformational states - outward open, outward occluded, and inward occluded as well as substrate-free hOCT1 in both partially and fully open states. We also present hOCT1 in complex with spironolactone in both outward and inward facing conformations. These structures provide atomic-level insights into the dynamic metformin transfer process via hOCT1 and the mechanism by which spironolactone inhibits it. Additionally, we identify a 'YER' motif critical for the conformational flexibility of hOCT1 and likely other SLC22 family transporters. Our findings significantly advance the understanding of hOCT1 molecular function and offer a foundational framework for the design of new therapeutic agents targeting this transporter.

2.
Bioconjug Chem ; 35(2): 223-231, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38215010

RESUMO

Membrane protein structures are essential for the molecular understanding of diverse cellular processes and drug discovery. Detergents are not only widely used to extract membrane proteins from membranes but also utilized to preserve native protein structures in aqueous solution. However, micelles formed by conventional detergents are suboptimal for membrane protein stabilization, necessitating the development of novel amphiphilic molecules with enhanced protein stabilization efficacy. In this study, we prepared two sets of tandem malonate-derived glucoside (TMG) variants, both of which were designed to increase the alkyl chain density in micelle interiors. The alkyl chain density was modulated either by reducing the spacer length (TMG-Ms) or by introducing an additional alkyl chain between the two alkyl chains of the original TMGs (TMG-Ps). When evaluated with a few membrane proteins including a G protein-coupled receptor, TMG-P10,8 was found to be substantially more efficient at extracting membrane proteins and also effective at preserving protein integrity in the long term compared to the previously described TMG-A13. This result reveals that inserting an additional alkyl chain between the two existing alkyl chains is an effective way to optimize detergent properties for membrane protein study. This new biochemical tool and the design principle described have the potential to facilitate membrane protein structure determination.


Assuntos
Detergentes , Proteínas de Membrana , Proteínas de Membrana/metabolismo , Detergentes/química , Micelas
3.
Chem Sci ; 14(45): 13014-13024, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38023530

RESUMO

Membrane proteins play essential roles in a number of biological processes, and their structures are important in elucidating such processes at the molecular level and also for rational drug design and development. Membrane protein structure determination is notoriously challenging compared to that of soluble proteins, due largely to the inherent instability of their structures in non-lipid environments. Micelles formed by conventional detergents have been widely used for membrane protein manipulation, but they are suboptimal for long-term stability of membrane proteins, making downstream characterization difficult. Hence, there is an unmet need for the development of new amphipathic agents with enhanced efficacy for membrane protein stabilization. In this study, we designed and synthesized a set of glucoside amphiphiles with a melamine core, denoted melamine-cored glucosides (MGs). When evaluated with four membrane proteins (two transporters and two G protein-coupled receptors), MG-C11 conferred notably enhanced stability compared to the commonly used detergents, DDM and LMNG. These promising findings are mainly attributed to a unique feature of the MGs, i.e., the ability to form dynamic water-mediated hydrogen-bond networks between detergent molecules, as supported by molecular dynamics simulations. Thus, MG-C11 is the first example of a non-peptide amphiphile capable of forming intermolecular hydrogen bonds within a protein-detergent complex environment. Detergent micelles formed via a hydrogen-bond network could represent the next generation of highly effective membrane-mimetic systems useful for membrane protein structural studies.

4.
Bioconjug Chem ; 34(4): 739-747, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-36919927

RESUMO

High-resolution membrane protein structures are essential for a fundamental understanding of the molecular basis of diverse cellular processes and for drug discovery. Detergents are widely used to extract membrane-spanning proteins from membranes and maintain them in a functional state for downstream characterization. Due to limited long-term stability of membrane proteins encapsulated in conventional detergents, development of novel agents is required to facilitate membrane protein structural study. In the current study, we designed and synthesized tris(hydroxymethyl)aminomethane linker-bearing triazine-based triglucosides (TTGs) for solubilization and stabilization of membrane proteins. When these glucoside detergents were evaluated for four membrane proteins including two G protein-coupled receptors, a few TTGs including TTG-C10 and TTG-C11 displayed markedly enhanced behaviors toward membrane protein stability relative to two maltoside detergents [DDM (n-dodecyl-ß-d-maltoside) and LMNG (lauryl maltose neopentyl glycol)]. This is a notable feature of the TTGs as glucoside detergents tend to be inferior to maltoside detergents at stabilizing membrane proteins. The favorable behavior of the TTGs for membrane protein stability is likely due to the high hydrophobicity of the lipophilic groups, an optimal range of hydrophilic-lipophilic balance, and the absence of cis-trans isomerism.


Assuntos
Detergentes , Proteínas de Membrana , Proteínas de Membrana/química , Detergentes/química , Trometamina , Triazinas , Glucosídeos/química , Solubilidade
5.
J Genet ; 992020.
Artigo em Inglês | MEDLINE | ID: mdl-32089527

RESUMO

The base composition of the chloroplast genes is of great interest because they play a highly significant role in the evolutionary development of the plants. Evaluation of the 48 chloroplast protein-coding genes of Hemiptelea davidii showed that the average GC content was about 37.32%, while at the third codon base position alone the average GC content was only 27.80%. The 48 genes were classified into five groups based on the gene function and each group displayed specific codon characteristics. Based on the relative synonymous codon usage analysis, a total of 30 high-frequency codons and 11 optimal codons were identified, most of them ended with A or T. Neutrality plot, ENC-plot and PR2-plot analyses showed that the codon usage bias of the chloroplast genes of H. davidii was greatly influenced by natural selection pressures. Meanwhile, the frequency of codon usage of chloroplast genes among different plant species displayed similarities, with some synonymous codons were preferred to be used in H. davidii. In this study, the codon usage pattern of the chloroplast protein coding genes of H. davidii provides us with a better understanding of the expression of chloroplast genes, and may advice the future molecular breeding programmes.


Assuntos
Uso do Códon , Genes de Cloroplastos , Rosales/genética , Composição de Bases , Evolução Molecular , Genoma de Cloroplastos , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA