Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35805310

RESUMO

This study aimed to evaluate the risk of cataract formation associated with radiation exposure from 18F-FDG PET/CT in oncology patients, using data from Taiwan's National Health Insurance Research Database. The exposed group (Group E) consisted of oncology patients receiving 18F-FDG PET/CT within the first year of a cancer diagnosis. The comparison group (Group C) included subjects who had never been exposed to 18F-FDG PET/CT radiation and were propensity score-matched by date of enrolment, age, sex, cancer type, associated comorbidities, and CT utilization. Multiple Cox proportional hazard regression analysis was used to estimate the hazard ratio (HR) of cataract risk due to radiation exposure, while adjusting for potential confounding factors. A total of 703 patients and 1406 matched subjects were in Groups E and C, respectively. The incidence of cataract formation was not significantly higher among subjects in Group E (adjusted HR = 1.264; 95% confidence interval [CI] = 0.845-1.891). Our results revealed that 18F-FDG PET/CT was not a significant risk factor for developing cataracts in oncology patients.


Assuntos
Catarata , Neoplasias , Catarata/epidemiologia , Catarata/etiologia , Estudos de Coortes , Fluordesoxiglucose F18 , Humanos , Neoplasias/complicações , Pontuação de Propensão
2.
Antioxidants (Basel) ; 10(5)2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-34068192

RESUMO

Early-life sleep deprivation (ESD) is a serious condition with severe cognitive sequelae. Considering hippocampus plays an essential role in cognitive regulation, the present study aims to determine whether melatonin, a neuroendocrine beard with significant anti-oxidative activity, would greatly depress the hippocampal oxidative stress, improves the molecular machinery, and consequently exerts the neuro-protective effects following ESD. Male weanling Wistar rats (postnatal day 21) were subjected to ESD for three weeks. During this period, the animals were administered normal saline or melatonin (10 mg/kg) via intraperitoneal injection between 09:00 and 09:30 daily. After three cycles of ESD, the animals were kept under normal sleep/wake cycle until they reached adulthood and were sacrificed. The results indicated that ESD causes long-term effects, such as impairment of ionic distribution, interruption of the expressions of neurotransmitters and receptors, decreases in the levels of several antioxidant enzymes, and impairment of several signaling pathways, which contribute to neuronal death in hippocampal regions. Melatonin administration during ESD prevented these effects. Quantitative evaluation of cells also revealed a higher number of neurons in the melatonin-treated animals when compared with the saline-treated animals. As the hippocampus is critical to cognitive activity, preserving or even improving the hippocampal molecular machinery by melatonin during ESD not only helps us to better understand the underlying mechanisms of ESD-induced neuronal dysfunction, but also the therapeutic use of melatonin to counteract ESD-induced neuronal deficiency.

3.
Oncogenesis ; 9(2): 9, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019907

RESUMO

Chondroitin sulfate synthases, a family of enzyme involved in chondroitin sulfate (CS) polymerization, are dysregulated in various human malignancies, but their roles in glioma remain unclear. We performed database analysis and immunohistochemistry on human glioma tissue, to demonstrate that the expression of CHSY1 was frequently upregulated in glioma, and that it was associated with adverse clinicopathologic features, including high tumor grade and poor survival. Using a chondroitin sulfate-specific antibody, we showed that the expression of CHSY1 was significantly associated with CS formation in glioma tissue and cells. In addition, overexpression of CHSY1 in glioma cells enhanced cell viability and orthotopic tumor growth, whereas CHSY1 silencing suppressed malignant growth. Mechanistic investigations revealed that CHSY1 selectively regulates PDGFRA activation and PDGF-induced signaling in glioma cells by stabilizing PDGFRA protein levels. Inhibiting PDGFR activity with crenolanib decreased CHSY1-induced malignant characteristics of GL261 cells and prolonged survival in an orthotopic mouse model of glioma, which underlines the critical role of PDGFRA in mediating the effects of CHSY1. Taken together, these results provide information on CHSY1 expression and its role in glioma progression, and highlight novel insights into the significance of CHSY1 in PDGFRA signaling. Thus, our findings point to new molecular targets for glioma treatment.

4.
Neuroscience ; 429: 282-292, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31689489

RESUMO

Acceleration of cytoskeletal remodeling in regenerated axons is crucial for a fully functional recovery following peripheral nerve injury (PNI). Melatonin plays important roles in cell differentiation and protection of cytoskeleton stability, thus, the present study aimed to investigate whether melatonin can enhance neurite outgrowth and promote cytoskeletal remodeling in a PNI animal model and in differentiated neurons. End-to-side neurorrhaphy (ESN) rat model was used for assessing cytoskeletal rearrangement in regenerated axon. Subject rats received 1 mg/kg/day melatonin injection for one month. The amplitude of compound muscle action potentials and the number of re-innervated motor end plates on target muscles were assessed to represent the functional recovery after ESN. Melatonin treatment enhanced functional recovery after ESN, compared to the saline treated group. Additionally, in spinal cord and peripheral nerve tissue, animals receiving melatonin displayed enhanced expression of GAP43 and ß3-tubulin one month after ESN, and an increased number of re-innervated motor end plates on their target muscle. In vitro analysis revealed that melatonin treatment significantly promoted neurite outgrowth, and increased expression of melatonin receptors as well as ß3-tubulin in mouse neuroblastoma Neuro-2a (N2a) cells. Treatment with a melatonin receptor antagonist, luzindole, significantly suppressed melatonin receptors and ß3-tubulin expression. Importantly, we found that melatonin treatment suppressed activation of calmodulin-dependent protein kinase II (CaMKII) in vitro and in vivo, suggesting that the ß3-tubulin remodeling may occur via CaMKII-mediated Ca2+ signaling. These results suggested that melatonin may promote functional recovery after PNI by accelerating cytoskeletal remodeling through the melatonin receptor-dependent pathway.


Assuntos
Melatonina , Animais , Citoesqueleto , Melatonina/farmacologia , Camundongos , Regeneração Nervosa , Ratos , Ratos Wistar , Receptores de Melatonina
5.
Am J Cancer Res ; 9(2): 347-362, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30906633

RESUMO

Abnormal expression of dermatan sulfate epimerase (DSE) has been found in many types of cancer, while its expression and biological functions in hepatocellular carcinoma (HCC) progression remains obscure. Here we report that DSE, the enzyme that catalyzes the conversion of chondroitin sulfate (CS) to dermatan sulfate (DS), is a critical mediator of malignant character in HCC, through regulation of CCL5 signaling. DSE mRNA and protein were downregulated frequently in HCC tumors, where these events were associated with advanced tumor stages, metastases, and poor survival. DSE-mediated tumor growth was evaluated in immune-deficient and immune-complement mice models. Restoring DSE expression in HCC cells suppressed tumor growth, as well as decreased IL-1ß and CCL5 levels in transplanted tumor tissue. Mechanistic investigations revealed that the expression of DSE altered CCL5 signaling and cell surface binding in HCC cells. Accordingly, DSE suppressed CCL5-induced cell growth, migration, and invasion, whereas silencing of DSE enhanced CCL5-triggered malignant phenotypes. Inhibiting CCR1 activity with BX471 decreased CCL5-induced malignant characters caused by siRNA-mediated knockdown of DSE in HCC cells, establishing the critical role of the CCL5/CCR1 axis in mediating the effects of DSE expression. Taken together, our results suggest that DSE dysregulation contributes to the malignant behavior of HCC cells. This provides novel insight into the significance of DSE in CCL5 signaling and HCC pathogenesis.

6.
Neurotoxicology ; 71: 60-74, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30583000

RESUMO

Peripheral neuropathy, a chronic complication of diabetes mellitus (DM), is often accompanied by the onset of severe pain symptoms that affect quality of life. However, the underlying mechanisms remain elusive. In the present study, we used Sprague-Dawley rats to establish a rodent model of the human type 1 DM by a single intraperitoneal (i.p.) injection with streptozotocin (STZ) (60 mg/kg). Hypersensitivity, including hyperalgesia and allodynia, developed in the STZ-induced diabetic rats. Cutaneous innervation exhibited STZ-induced reductions of protein gene product 9.5-, peripherin-, and neurofilament 200-immunoreactivity (IR) subepidermal nerve fibers (SENFs). Moreover, the decreases of substance P (SP)- and calcitonin gene-related peptide (CGRP)-IR SENFs were distinct gathered from the results of extracellular signal-regulated kinase 1 and 2 (ERK1/2)- and phosphorylated ERK1/2 (pERK1/2)-IR SENFs in STZ-induced diabetic rats. Double immunofluorescence studies demonstrated that STZ-induced pERK1/2-IR was largely increased in SENFs where only a small portion was colocalized with SP- or CGRP-IR. By an intraplantar (i. pl.) injection with a MEK inhibitor, U0126 (1,4-Diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadiene), hyperalgesia was attenuated in a dose-responsive manner. Botulinum toxin serotype A had dose-dependent analgesic effects on STZ-induced hyperalgesia and allodynia, which exhibited equivalent results as the efficacy of transient receptor potential vanilloid (TRPV) channel antagonists. Morphological evidence further confirmed that STZ-induced SP-, CGRP- and pERK1/2-IR were reduced in SENFs after pharmacological interventions. From the results obtained in this study, it is suggested that increases of pERK1/2 in SENFs may participate in the modulation of TRPV channel-mediated neurogenic inflammation that triggers hyperalgesia in STZ-induced diabetic rats. Therefore, ERK1/2 provides a potential therapeutic target and efficient pharmacological strategies to address hyperglycemia-induced neurotoxicity.


Assuntos
Neuropatias Diabéticas/metabolismo , Hiperalgesia/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fibras Nervosas/metabolismo , Animais , Neuropatias Diabéticas/induzido quimicamente , Neuropatias Diabéticas/complicações , Hiperalgesia/etiologia , Masculino , Fosforilação , Ratos Sprague-Dawley , Estreptozocina/administração & dosagem
7.
PLoS One ; 13(6): e0198364, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29864158

RESUMO

Remodeling of the extracellular matrix (ECM) in the tumor microenvironment promotes glioma progression. Chondroitin sulfate (CS) proteoglycans appear in the ECM and on the cell surface, and can be catalyzed by dermatan sulfate epimerase to form chondroitin sulfate/dermatan sulfate (CS/DS) hybrid chains. Dermatan sulfate epimerase 1 (DSE) is overexpressed in many types of cancer, and CS/DS chains mediate several growth factor signals. However, the role of DSE in gliomas has never been explored. In the present study, we determined the expression of DSE in gliomas by consulting a public database and conducting immunohistochemistry on a tissue array. Our investigation revealed that DSE was upregulated in gliomas compared with normal brain tissue. Furthermore, high DSE expression was associated with advanced tumor grade and poor survival. We found high DSE expression in several glioblastoma cell lines, and DSE expression directly mediated DS chain formation in glioblastoma cells. Knockdown of DSE suppressed the proliferation, migration, and invasion of glioblastoma cells. In contrast, overexpression of DSE in GL261 cells enhanced these malignant phenotypes and in vivo tumor growth. Interestingly, we found that DSE selectively regulated heparin-binding EGF-like growth factor (HB-EGF)-induced signaling in glioblastoma cells. Inhibiting epidermal growth factor receptor (EGFR) and ErbB2 with afatinib suppressed DSE-enhanced malignant phenotypes, establishing the critical role of the ErbB pathway in regulating the effects of DSE expression. This evidence indicates that upregulation of DSE in gliomas contributes to malignant behavior in cancer cells. We provide novel insight into the significance of DS chains in ErbB signaling and glioma pathogenesis.


Assuntos
Antígenos de Neoplasias/metabolismo , Neoplasias Encefálicas/patologia , Proteínas de Ligação a DNA/metabolismo , Glioblastoma/patologia , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Análise Serial de Tecidos/métodos , Regulação para Cima , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Receptores ErbB/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/metabolismo , Fator de Crescimento Semelhante a EGF de Ligação à Heparina/metabolismo , Humanos , Masculino , Camundongos , Gradação de Tumores , Invasividade Neoplásica , Transplante de Neoplasias , Fenótipo , Análise de Sobrevida
8.
Cancer Lett ; 403: 280-288, 2017 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-28652022

RESUMO

Abnormal expression of chondroitin sulfate has been found in many types of cancer, while its biological functions in hepatocellular carcinoma (HCC) progression remain uninvestigated. Here, we report that chondroitin sulfate synthase 1 (CHSY1), the enzyme that mediates the polymerization step of chondroitin sulfate, is a critical mediator of malignant character in HCC that acts via modulating the activity of the hedgehog signaling. CHSY1 was up-regulated frequently in HCC where these events were associated with worse histologic grade and poor survival. Enforced expression of CHSY1 was sufficient to enhance cell growth, migration, invasion, and epithelial-mesenchymal transition, whereas silencing of CHSY1 suppressed these malignant phenotypes. Mechanistic investigations revealed that the increase of cell surface chondroitin sulfate by CHSY1 promoted sonic hedgehog binding and signaling. Inhibiting hedgehog pathway with vismodegib decreased CHSY1-induced migration, invasion, and lung metastasis of HCC cells, establishing the critical role of hedgehog signaling in mediating the effects of CHSY1 expression. Together, our results indicate that CHSY1 overexpression in HCC contributes to the malignant behaviors in cancer cells, we provide novel insights into the significance of chondroitin sulfate in hedgehog signaling and HCC pathogenesis.


Assuntos
Carcinoma Hepatocelular/enzimologia , Proteínas Hedgehog/metabolismo , Neoplasias Hepáticas/enzimologia , Neoplasias Pulmonares/enzimologia , N-Acetilgalactosaminiltransferases/metabolismo , Transdução de Sinais , Anilidas/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/secundário , Movimento Celular , Proliferação de Células , Sulfatos de Condroitina/metabolismo , Transição Epitelial-Mesenquimal , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glucuronosiltransferase , Proteínas Hedgehog/antagonistas & inibidores , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Enzimas Multifuncionais , N-Acetilgalactosaminiltransferases/genética , Gradação de Tumores , Invasividade Neoplásica , Fenótipo , Piridinas/farmacologia , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Histochem Cell Biol ; 146(5): 599-608, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27468821

RESUMO

The P/Q-type voltage-dependent calcium channel (Cav2.1) in the presynaptic membranes of motor nerve terminals plays an important role in regulating Ca2+ transport, resulting in transmitter release within the nervous system. The recovery of Ca2+-dependent signal transduction on motor end plates (MEPs) and innervated muscle may directly reflect nerve regeneration following peripheral nerve injury. Although the functional significance of calcium channels and the levels of Ca2+ signalling in nerve regeneration are well documented, little is known about calcium channel expression and its relation with the dynamic Ca2+ ion distribution at regenerating MEPs. In the present study, end-to-side neurorrhaphy (ESN) was performed as an in vivo model of peripheral nerve injury. The distribution of Ca2+ at regenerating MEPs following ESN was first detected by time-of-flight secondary ion mass spectrometry, and the specific localization and expression of Cav2.1 channels were examined by confocal microscopy and western blotting. Compared with other fundamental ions, such as Na+ and K+, dramatic changes in the Ca2+ distribution were detected along with the progression of MEP regeneration. The re-establishment of Ca2+ distribution and intensity were correlated with the functional recovery of muscle in ESN rats. Furthermore, the re-clustering of Cav2.1 channels after ESN at the nerve terminals corresponded with changes in the Ca2+ distribution. These results indicated that renewal of the Cav2.1 distribution within the presynaptic nerve terminals may be necessary for initiating a proper Ca2+ influx and shortening the latency of muscle contraction during nerve regeneration.


Assuntos
Canais de Cálcio Tipo N/análise , Canais de Cálcio Tipo N/metabolismo , Cálcio/análise , Cálcio/metabolismo , Terminações Nervosas/metabolismo , Terminações Nervosas/patologia , Espectrometria de Massa de Íon Secundário , Animais , Cátions Bivalentes/análise , Cátions Bivalentes/metabolismo , Modelos Animais de Doenças , Masculino , Ratos , Ratos Wistar
10.
Mol Pain ; 122016.
Artigo em Inglês | MEDLINE | ID: mdl-27296621

RESUMO

BACKGROUND: Spared nerve injury is an important neuropathic pain model for investigating the role of intact primary afferents in the skin on pain hypersensitivity. However, potential cellular mechanisms remain poorly understood. In phosphoinositide-3 kinase pathway, pyruvate dehydrogenase kinase 1 (PDK1) participates in the regulation of neuronal plasticity for central sensitization. The downstream cascades of PDK1 include: (1) protein kinase C gamma (PKCg) controls the trafficking and phosphorylation of ionotropic glutamate receptor; (2) protein kinase B (Akt)/the mammalian target of rapamycin (mTOR) signaling is responsible for local protein synthesis. Under these statements, we therefore hypothesized that an increase of PKCg activation and mTOR-dependent PKCg synthesis in intact primary afferents after SNI might contribute to pain hypersensitivity. RESULTS: The variants of spared nerve injury were performed in Sprague-Dawley rats by transecting any two of the three branches of the sciatic nerve, leaving only one branch intact. Following SNIt (spared tibial branch), mechanical hyperalgesia and mechanical allodynia, but not thermal hyperalgesia, were significantly induced. In the first footpad, normal epidermal innervations were verified by the protein gene product 9.5 (PGP9.5)- and growth-associated protein 43 (GAP43)-immunoreactive (IR) intraepidermal nerve fibers (IENFs) densities. Furthermore, the rapid increases of phospho-PKCg- and phosphomTOR-IR subepidermal nerve fibers (SENFs) areas were distinct gathered from the results of PGP9.5-, GAP43-, and neurofilament 200 (NF200)-IR SENFs areas. The efficacy of PKC inhibitor (GF 109203X) or mTOR complex 1 inhibitor (rapamycin) for attenuating mechanical hyperalgesia and mechanical allodynia by intraplantar injection was dose-dependent. CONCLUSIONS: From results obtained in this study, we strongly recommend that the intact SENFs persistently increase PKCg activation and mTOR-dependent PKCg synthesis participate in the initiation and maintenance of mechanical hypersensitivity in spared nerve injury, which represents as a novel insight into the therapeutic strategy of pain in the periphery.


Assuntos
Epiderme/inervação , Hiperalgesia/enzimologia , Hiperalgesia/patologia , Fibras Nervosas/patologia , Proteína Quinase C/metabolismo , Nervo Isquiático/enzimologia , Nervo Isquiático/lesões , Animais , Comportamento Animal , Derme/patologia , Ativação Enzimática , Epiderme/cirurgia , Masculino , Células de Merkel/patologia , Dor/complicações , Dor/patologia , Ratos Sprague-Dawley , Nervo Isquiático/patologia , Serina-Treonina Quinases TOR/metabolismo
11.
Neuropeptides ; 48(3): 109-17, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24630273

RESUMO

Paclitaxel in chemotherapy-induced peripheral neuropathy (CIPN) is predominantly with a dose-limiting effect on neuropathic pain in clinical strategy. In the present study, the relationship between the neuropathic pain and nerve degeneration in paclitaxel CIPN was investigated. Adult male Sprague-Dawley (SD) rats were divided into three paclitaxel groups (0.5, 1.0, 2.0mg/kg) and a vehicle group with four intraperitoneal (i.p.) injections on alternating days. Our results demonstrated that the paclitaxel groups significantly exhibited the reductions of thermal hyperalgesia and mechanical allodynia. The neurotoxicity of paclitaxel conveyed the degeneration of intraepidermal nerve fibers (IENFs) in hindpaw glabrous skin. Nevertheless, the influence of paclitaxel to the peptidergic IENFs are even unknown. The skin innervation of protein gene product 9.5 (PGP 9.5)-immunoreactive (IR) IENFs in paclitaxel groups revealed the decreasing levels of density (73.54±0.72%, 63.17±1.77%, 61.79±2.68%, respectively; vs. vehicle group, p<0.05) throughout the entire experimental period. Additionally, the diminishing levels of density for peptidergic substance P (SP)-IR IENFs in paclitaxel groups were significantly shown (48.84±1.74%, 30.02±1.69%, 30.14±0.37%, respectively; vs. vehicle group, p<0.05). On the contrary, the density for peptidergic calcitonin gene-related peptide (CGRP)-IR IENFs in paclitaxel groups were revealed the similar decreasing levels (82.75±0.91%, 84.34±3.20%, 81.99±0.25%, respectively; vs. vehicle group, p<0.05). Linear regression analyses exhibited that densities of IENFs for PGP 9.5, SP, CGRP were correlated with withdrawal latencies (r(2)=0.77, p<0.0001; r(2)=0.75, p<0.0001; r(2)=0.28, p=0.0001, respectively) and mechanical thresholds (r(2)=0.43, p<0.0001; r(2)=0.73, p<0.0001; r(2)=0.40, p<0.0001, respectively). Therefore, the present results suggested that the development of neuropathic pain following paclitaxel injection induced the progressive degeneration of IENFs in skin and gave the evidence that the peptidergic IENFs may play an important role in therapeutic strategy of paclitaxe CIPN.


Assuntos
Antineoplásicos Fitogênicos/toxicidade , Epiderme/inervação , Degeneração Neural/induzido quimicamente , Neuralgia/induzido quimicamente , Paclitaxel/toxicidade , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Masculino , Fibras Nervosas/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Ratos , Ratos Sprague-Dawley , Substância P/metabolismo
12.
PLoS One ; 8(1): e53444, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23301073

RESUMO

BACKGROUND: Adequate migration of Schwann cells (Sc) is crucial for axon-guidance in the regenerative process after peripheral nerve injury (PNI). Considering neuregulin-erbB-FAK signaling is an essential pathway participating in the regulation of Sc migration during development, the present study is aimed to examine whether neuregulin would exert its beneficial effects on adult following PNI and further determine the potential changes of downstream pathway engaged in neuro-regeneration by both in vitro and in vivo approaches. METHODOLOGY AND PRINCIPAL FINDINGS: Cultured RSC96 cells treated with neuregulin were processed for erbB2/3 immunofluorescence and FAK immunoblotings. The potential effects of neuregulin on Sc were assessed by cell adherence, spreading, and migration assays. In order to evaluate the functional significance of neuregulin on neuro-regeneration, the in vivo model of PNI was performed by chronic end-to-side neurorrhaphy (ESN). In vitro studies indicated that after neuregulin incubation, erbB2/3 were not only expressed in cell membranes, but also distributed throughout the cytoplasm and nucleus of RSC96 cells. Activation of erbB2/3 was positively correlated with FAK phosphorylation. Neuregulin also increases Sc adherence, spreading, and migration by 127.2 ± 5.0%, 336.8 ± 3.0%, and 80.0 ± 5.7%, respectively. As for in vivo study, neuregulin significantly accelerates the speed of Sc migration and increases Sc expression in the distal stump of injured nerves. Retrograde labeling and compound muscle action potential recordings (CMAP) also showed that neuregulin successfully facilitates nerve regeneration by eliciting noticeably larger CMAP and promoting quick re-innervation of target muscles. CONCLUSIONS: As neuregulin successfully improves axo-glial interaction by speeding Sc migration via the erbB2/3-FAK pathway, therapeutic use of neuregulin may thus serve as a promising strategy to facilitate the progress of nerve regeneration after PNI.


Assuntos
Quinase 1 de Adesão Focal/metabolismo , Regeneração Nervosa/fisiologia , Neuregulina-1/farmacologia , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Células de Schwann/citologia , Animais , Adesão Celular , Movimento Celular , Eletrofisiologia , Masculino , Microscopia de Fluorescência , Modelos Estatísticos , Neuregulina-1/metabolismo , Fosforilação , Ratos , Ratos Wistar , Regeneração , Transdução de Sinais
13.
Microsc Microanal ; 18(3): 425-35, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22494489

RESUMO

Sleep deprivation causes cognitive dysfunction in which impaired neuronal plasticity in hippocampus may underlie the molecular mechanisms of this deficiency. Considering calcium-mediated NMDA receptor subunit 1 (NMDAR1) and neuronal nitric oxide synthase (nNOS) activation plays an important role in the regulation of neuronal plasticity, the present study is aimed to determine whether total sleep deprivation (TSD) would impair calcium expression, together with injury of the neuronal plasticity in hippocampus. Adult rats subjected to TSD were processed for time-of-flight secondary ion mass spectrometry, NMDAR1 immunohistochemistry, nNOS biochemical assay, cytochrome oxidase histochemistry, and the Morris water maze learning test to detect ionic, neurochemical, bioenergetic as well as behavioral changes of neuronal plasticity, respectively. Results indicated that in normal rats, strong calcium signaling along with intense NMDAR1/nNOS expression were observed in hippocampal regions. Enhanced calcium imaging and neurochemical expressions corresponded well with strong bioenergetic activity and good performance of behavioral testing. However, following TSD, both calcium intensity and NMDAR1/nNOS expressions were significantly decreased. Behavioral testing also showed poor responses after TSD. As proper calcium expression is essential for maintaining hippocampal neuronal plasticity, impaired calcium expression would depress downstream NMDAR1-mediated nNOS activation, which might contribute to the initiation or development of TSD-related cognitive deficiency.


Assuntos
Cálcio/metabolismo , Transtornos Cognitivos/fisiopatologia , Hipocampo/patologia , Hipocampo/fisiopatologia , Privação do Sono/fisiopatologia , Animais , Comportamento Animal , Expressão Gênica , Imuno-Histoquímica , Microscopia , Óxido Nítrico Sintase/biossíntese , Ratos , Receptores de N-Metil-D-Aspartato/biossíntese , Transdução de Sinais
14.
Cells Tissues Organs ; 195(3): 272-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21625066

RESUMO

In this study, we investigated the expression of neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), two specific enzymes for nitric oxide (NO) synthesis, in the development of liver fibrosis induced by chronic bile duct ligation (BDL) in the rabbit. We specifically studied the liver-innervated nitroxidergic neurons that originate in the nodose ganglion (NG), nucleus of the solitary tract (NTS) and dorsal motor vagal nucleus (DMV). Our data showed that BDL resulted in overexpression of NADPH-d/nNOS in the NG, NTS and DMV neurons. Using densitometric analysis, we found a significant increase in NADPH-d expression as a result of BDL in the NG, NTS and DMV (72.6, 79.4 and 57.4% increase, respectively). These findings were corroborated by serum biochemistry and hepatic histopathological examination, which were influenced by NADPH-d/nNOS-generated NO in the liver following BDL. Upregulation of NADPH-d/nNOS expression may have important implications, including (1) facilitation of extrahepatic biliary parasympathetic tone that promotes gallbladder emptying of excess stagnant bile; (2) relaxation of smooth muscles of bile canaliculi thus participating in the pathogenesis of cholestasis; (3) dilation of hepatic sinusoids to counter BDL-induced intrahepatic portal hypertension in which endothelia may be damaged, and (4) alterations in hepatic metabolism, such as glycogenesis, bile formation and secretion, and bilirubin clearance.


Assuntos
Sistema Biliar/fisiologia , Icterícia Obstrutiva/patologia , NADPH Desidrogenase/metabolismo , Neurônios Nitrérgicos/patologia , Óxido Nítrico Sintase Tipo I/metabolismo , Nervo Vago/patologia , Animais , Icterícia Obstrutiva/metabolismo , Neurônios Nitrérgicos/enzimologia , Gânglio Nodoso/enzimologia , Gânglio Nodoso/patologia , Coelhos , Nervo Vago/enzimologia
15.
J Pineal Res ; 47(3): 211-20, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19627456

RESUMO

Sleep disorders cause cognitive dysfunction in which impaired neuronal plasticity in the hippocampus may underline the molecular mechanisms of this deficiency. As sirtuin 1 (SIRT1) plays an important role in maintaining metabolic homeostasis and neuronal plasticity, this study is aimed to determine whether melatonin exerts beneficial effects on preserving SIRT1 activation following total sleep deprivation (TSD). TSD was performed by disc on water method for five consecutive days. During this period, animals daily received melatonin at doses of 5, 25, 50 or 100 mg/kg. The cytochrome oxidase (COX) histochemistry, SIRT1 immunohistochemistry together with Morris water maze learning test were performed to examine the metabolic, neurochemical, as well as the behavioral changes in neuronal plasticity, respectively. The results indicate that in normal rats, numerous COX and SIRT1 positive-labeled neurons with strong staining intensities were found in hippocampal pyramidal and granular cell layers. Following TSD, both COX and SIRT1 reactivities were drastically decreased as revealed by reduced staining pattern and labeling frequency. Behavioral data corresponded well with morphological findings in which spatial memory test in water maze was significantly impaired after TSD. However, in rats receiving different doses of melatonin, both COX and SIRT1 expressions were successfully preserved. Considerably better performance on behavioral testing further strengthened the beneficial effects of melatonin. These findings suggest that melatonin may serve as a novel therapeutic strategy directed for preventing the memory deficits resulting from TSD, possibly by effectively preserving the metabolic function and neuronal plasticity engaged in maintaining cognitive activity.


Assuntos
Depressores do Sistema Nervoso Central/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Melatonina/farmacologia , Sirtuína 1/metabolismo , Privação do Sono/metabolismo , Hormônio Adrenocorticotrópico/sangue , Animais , Peso Corporal/efeitos dos fármacos , Corticosterona/sangue , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Hipocampo/metabolismo , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Ratos , Ratos Wistar , Privação do Sono/fisiopatologia
16.
Cells Tissues Organs ; 190(4): 230-45, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19494480

RESUMO

Nerve degeneration and regeneration have been investigated at the suture site following proximal-to-distal vagal-hypoglossal nerve coaptation (VHC) in cats at different time points (from 3 to 315 days postoperatively; dpo). Massive axonal degeneration and myelin breakdown and removal of degraded neural debris were observed during the first 2 weeks postoperatively. This was followed by active Schwann cell multiplication and inflammatory cell invasion at 14 dpo. Schwann cells appeared mobile, and were guided to the newly developed growth cones, dividing them into axonal sprout clusters. At 18 dpo, the migrating Schwann cells were confined to the preexisting basal lamina scaffolds, forming bands of Bungner. It is suggested that the latter may play a key role in navigating the regenerating axons to their newly acquired target organ at 22 dpo. Remyelination of axons was not observed till 46 dpo. Compared with the rapid axonal reaction in other models of nerve injury, the degeneration process in VHC was protracted and, furthermore, regeneration and remyelination were delayed. The subtle remodeling of the nerve in cross-coaptation may be far greater than previously recognized, and this may have clinical importance since patients undergoing nerve crossover microsurgery exhibit delayed motor rehabilitation, apparently as a direct result of a change in target innervation. Defining the mechanisms underlying the neuroplastic program could thus potentially improve the prognosis of crossover of two different peripheral nerves.


Assuntos
Nervo Hipoglosso/cirurgia , Nervo Hipoglosso/ultraestrutura , Suturas/efeitos adversos , Nervo Vago/cirurgia , Nervo Vago/ultraestrutura , Animais , Gatos , Feminino , Nervo Hipoglosso/patologia , Masculino , Modelos Animais , Degeneração Neural/patologia , Regeneração Nervosa , Fatores de Tempo , Nervo Vago/patologia
17.
J Pineal Res ; 44(2): 172-80, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18289169

RESUMO

Peripheral nerve injury (PNI) produces functional changes in lesioned neurons in which oxidative stress is considered to be the main cause of neuronal damage. As superoxide dismutase (SOD) is an important antioxidative enzyme involved in redox regulation of oxidative stress, the present study determined whether melatonin would exert its beneficial effects by preserving the SOD reactivity following PNI. Adult rats subjected to hypoglossal nerve transection were intraperitoneally injected with melatonin at ones for 3, 7, 14, 30 and 60 days successively. The potential neuroprotective effects of melatonin were quantitatively demonstrated by neuronal nitric oxide synthase (nNOS), mitochondrial manganese SOD (Mn-SOD), and cytosolic copper-zinc SOD (Cu/Zn-SOD) immunohistochemistry. The functional recovery of the lesioned neurons was evaluated by choline acetyltransferase (ChAT) immunohistochemistry along with the electromyographic (EMG) recordings of denervation-induced fibrillation activity. The results indicate that following PNI, the nNOS immunoreactivity was significantly increased in lesioned neurons peaking at 14 days. The up-regulation of nNOS temporally coincided with the reduction of ChAT and SOD in which the Cu/Zn-SOD showed a greater diminution than Mn-SOD. However, following melatonin administration, the nNOS augmentation was successfully suppressed and the activities of Mn-SOD, Cu/Zn-SOD, and ChAT were effectively preserved at all postaxotomy periods. EMG data also showed a decreased fibrillation in melatonin-treated groups, suggesting a potential effect of melatonin in promoting functional recovery. In association with its significant capacity in preserving SOD reactivity, melatonin is suggested to serve as a powerful therapeutic agent for treating PNI-relevant oxidative damage.


Assuntos
Traumatismos do Nervo Hipoglosso , Nervo Hipoglosso/metabolismo , Melatonina/fisiologia , Neurônios Motores/metabolismo , Superóxido Dismutase/metabolismo , Animais , Eletromiografia , Ativação Enzimática/efeitos dos fármacos , Nervo Hipoglosso/enzimologia , Masculino , Neurônios Motores/enzimologia , Ratos , Ratos Wistar
18.
J Anat ; 212(3): 295-305, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18221481

RESUMO

Sleep disorders are associated with an increased rate of various metabolic disturbances, which may be related to oxidative stress and consequent lipid peroxidation. Since hepatic phosphatidylcholine plays an important role in metabolic regulation, the aim of the present study was to determine phosphatidylcholine expression in the liver following total sleep deprivation. To determine the effects of total sleep deprivation, we used adult rats implanted for polygraphic recording. Phosphatidylcholine expression was examined molecularly by the use of time-of-flight secondary ion mass spectrometry, along with biochemical solid-phase extraction. The parameters of oxidative stress were investigated by evaluating the hepatic malondialdehyde levels as well as heat shock protein 25 immunoblotting and immunohistochemistry. In normal rats, the time-of-flight secondary ion mass spectrometry spectra revealed specific peaks (m/z 184 and 224) that could be identified as molecular ions for phosphatidylcholine. However, following total sleep deprivation, the signals for phosphatidylcholine were significantly reduced to nearly one-third of the normal values. The results of solid-phase extraction also revealed that the phosphatidylcholine concentration was noticeably decreased, from 15.7 micromol g-1 to 9.4 micromol g-1, after total sleep deprivation. By contrast, the biomarkers for oxidative stress were drastically up-regulated in the total sleep deprivation-treated rats as compared with the normal ones (4.03 vs. 1.58 nmol mg-1 for malondialdehyde levels, and 17.1 vs. 6.7 as well as 1.8 vs. 0.7 for heat shock protein 25 immunoblotting and immunoreactivity, respectively). Given that phosphatidylcholine is the most prominent component of all plasma lipoproteins, decreased expression of hepatic phosphatidylcholine following total sleep deprivation may be attributed to the enhanced oxidative stress and the subsequent lipid peroxidation, which would play an important role in the formation or progression of total sleep deprivation-induced metabolic diseases.


Assuntos
Fígado/patologia , Privação do Sono/metabolismo , Animais , Western Blotting/métodos , Proteínas de Choque Térmico HSP27 , Proteínas de Choque Térmico/análise , Processamento de Imagem Assistida por Computador/métodos , Imuno-Histoquímica , Peroxidação de Lipídeos , Fígado/metabolismo , Masculino , Malondialdeído/análise , Proteínas de Neoplasias/análise , Estresse Oxidativo , Fosfatidilcolinas/análise , Fosfolipídeos/metabolismo , Ratos , Privação do Sono/patologia , Espectrometria de Massa de Íon Secundário/métodos
19.
J Anat ; 209(2): 239-50, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16879602

RESUMO

Sleep disorders are a form of stress associated with increased sympathetic activity, and they are a risk factor for the occurrence of cardiovascular disease. Given that nitric oxide (NO) may play an inhibitory role in the regulation of sympathetic tone, this study set out to determine the NO synthase (NOS) reactivity in the primary cardiovascular afferent neurons (i.e. nodose neurons) following total sleep deprivation (TSD). TSD was performed by the disc-on-water method. Following 5 days of TSD, all experimental animals were investigated for quantitative nicotinamine adenine dinucleotide phosphate-diaphorase (NADPH-d, a co-factor of NOS) histochemistry, neuronal NOS immunohistochemistry and neuronal NOS activity assay. In order to evaluate the endogenous metabolic activity of nodose neurons, cytochrome oxidase (COX) reactivity was further tested. All the above-mentioned reactivities were objectively assessed by computerized image analysis. The clinical significance of the reported changes was demonstrated by alterations of mean arterial blood pressure (MAP). The results indicated that in normal untreated rats, numerous NADPH-d/NOS- and COX-reactive neurons were found in the nodose ganglion (NG). Following TSD, however, both the labelling and staining intensity of NADPH-d/NOS as well as COX reactivity were drastically reduced in the NG compared with normal untreated ganglions. MAP was significantly higher in TSD rats (136+/-4 mmHg) than in normal untreated rats (123+/-2 mmHg). NO may serve as an important sympathoinhibition messenger released by the NG neurons, and decrease of NOS immunoexpression following TSD may account for the decrease in NOS content. In association with the reduction of NOS activity, a defect in NOS expression in the primary cardiovascular afferent neurons would enhance clinical hypertension, which might serve as a potential risk factor in the development of TSD-relevant cardiovascular disturbances.


Assuntos
Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Óxido Nítrico Sintase/metabolismo , Gânglio Nodoso/enzimologia , Privação do Sono/metabolismo , Animais , Pressão Sanguínea/fisiologia , Contagem de Células , Hipertensão/etiologia , Masculino , NADPH Desidrogenase/metabolismo , Gânglio Nodoso/citologia , Ratos , Ratos Wistar , Privação do Sono/fisiopatologia
20.
Brain Res ; 1013(1): 60-73, 2004 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-15196968

RESUMO

We reported recently the occurrence of a massive and selective elimination of synaptic boutons on motoneurons in the dorsal motor nucleus of the vagus (DMV) in the cat following vagal-hypoglossal nerve anastomosis (VHA) [J. Comp. Neurol. 458 (2003) 195]. This study was aimed to explore the synaptic reorganization in the other major nucleus associated with the vagus, namely, the nucleus ambiguus (NA) following the same treatment. In view of the tremendous difference in function, the NA and DMV are considered to be two ideal nuclei for explanatory studies seeking to elucidate how VHA could induce different plasticity of brainstem neurons influenced by the newly reestablished neural pathway. The present results showed that the vagal efferent neurons in the NA had responded to VHA in a different manner compared with those in the DMV. Firstly, the numbers of axon terminals containing round (R), round with dense-cored (R+D), pleomorphic (P) or flattened (F) synaptic vesicles contacting the NA motoneurons were markedly increased at 500-day postoperation, the longest reinnervation interval. The percent increases in the synapse frequency for R, R+D, P and F boutons were 8.6%, 274.4%, 238.3% and 400.0%, respectively. Secondly, the formation of astroglial ensheathment around the motoneurons in the DMV following VHA was not evident in the NA. Another striking difference was the extensive dendritic sprouting of the NA neurons as opposed to the dendritic retraction of the DMV neurons as shown by a significant increase in distal dendrites of NA motoneurons. The different modes of neural remodeling between NA and DMV may be attributed to the unique nature of the two nuclei to structures they normally supply and their different compatibility with the newly innervated target, viz. tongue skeletal musculature.


Assuntos
Nervo Hipoglosso/cirurgia , Nervo Hipoglosso/ultraestrutura , Sinapses/ultraestrutura , Nervo Vago/cirurgia , Nervo Vago/ultraestrutura , Anastomose Cirúrgica/métodos , Animais , Gatos , Feminino , Nervo Hipoglosso/fisiologia , Masculino , Regeneração Nervosa/fisiologia , Terminações Pré-Sinápticas/ultraestrutura , Sinapses/fisiologia , Nervo Vago/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA