Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 127: 251-263, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36522057

RESUMO

Nitrous acid (HONO) is an important source of hydrogen oxides (HOx), which affects air quality, the atmospheric oxidation capacity, and human health. Here, we present ambient measurements of the HONO concentrations in Zhuhai, a coastal city in Southern China, from February 7 to March 15, 2021. The campaign was classified into two periods during (P1) and after (P2) the Spring Festival holidays. The average HONO mixing ratio during P2 (1.19 ± 0.85 ppbv) was much higher than that during P1 (0.24 ± 0.18 ppbv), likely due to the contribution of homogeneous HONO formation. During nighttime, the heterogeneous conversion rate during P2 (0.0089/hr) was considerably higher than that during P1 (0.0057/hr), suggesting a higher heterogeneous NO2 conversion potential. However, the heterogeneous NO2 conversion was the dominant way during P1 with a high percentage of 88%, while comparable ratios of heterogeneous and homogeneous formation were found (54% vs. 46%) during P2, indicating that the homogeneous formation was also important during P2. During daytime, homogeneous reaction was the major known pathway, with a contribution of 16% during P1 and 27% during P2, leaving large unknown HONO sources which reasonably correlated with the photo-enhanced NO2 conversion. Two case scenarios were additionally explored, showing that there might be a primary emission source during one scenario (February 17-18) and vehicle emissions might be the major unknown HONO source for another scenario (March 3-5). The results suggest that large unknown daytime sources still exist which need more future ambient and laboratory studies.


Assuntos
Poluição do Ar , Férias e Feriados , Humanos , Dióxido de Nitrogênio , Ácido Nitroso/análise , Cidades , China
2.
PLoS One ; 16(7): e0254256, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237101

RESUMO

To improve the performance of wind sensors in the high velocity range, this paper proposes a wind measurement strategy for thermal wind velocity sensors that combines the constant power and constant temperature difference driving modes of the heating element. Based on the airflow distribution characteristics from fluid dynamics, sequential measurement and correction is proposed as a method of measuring wind direction. In addition, a wind velocity and direction measurement instrument was developed using the above-mentioned approaches. The test results showed that the proposed instrument can obtain large dynamic wind velocity measurements from 0 to 60 m/s. The wind velocity measurement accuracy was ±0.5 m/s in the common velocity range of 0-20 m/s and ±1 m/s in the high velocity range of 20-60 m/s. The wind direction accuracy was ±3° throughout the 360° range. The proposed approaches and instrument are not only practical but also capable of meeting the requirements of wide-range and large dynamic wind vector measurement applications.


Assuntos
Calefação/métodos , Hidrodinâmica , Temperatura , Vento
3.
Polymers (Basel) ; 13(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919380

RESUMO

A sensor operating at room temperature has low power consumption and is beneficial for the detection of environmental pollutants such as ammonia and benzene vapor. In this study, polyaniline (PANI) is made from aniline under acidic conditions by chemical oxidative polymerization and doped with tin dioxide (SnO2) at a specific percentage. The PANI/SnO2 hybrid material obtained is then ground at room temperature. The results of scanning electron microscopy show that the prepared powder comprises nanoscale particles and has good dispersibility, which is conducive to gas adsorption. The thermal decomposition temperature of the powder and its stability are measured using a differential thermo gravimetric analyzer. At 20 °C, the ammonia gas and benzene vapor gas sensing of the PANI/SnO2 hybrid material was tested at concentrations of between 1 and 7 ppm of ammonia and between 0.4 and 90 ppm of benzene vapor. The tests show that the response sensitivities to ammonia and benzene vapor are essentially linear. The sensing mechanisms of the PANI/SnO2 hybrid material to ammonia and benzene vapors were analyzed. The results demonstrate that doped SnO2 significantly affects the sensitivity, response time, and recovery time of the PANI material.

4.
Sci Total Environ ; 584-585: 189-206, 2017 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-28152457

RESUMO

Vehicular pollutant exposure of residents and pedestrians in high-rise deep street canyons with viaducts and noise barriers requires special concerns because the ventilation capacity is weak and the literature reported inconsistent findings on flow patterns as aspect ratios (building height/street width, H/W) are larger than 2. By conducting computational fluid dynamics (CFD) simulations coupled with the intake fraction iF and the daily pollutant exposure Et, this paper investigates the impact of street aspect ratios, viaducts and noise barriers on the flow and vehicular passive pollutant exposure in full-scale street canyons (H/W=1-6, W=24m). iF represents the fraction of total emissions inhaled by a population (1ppm=10-6), while Et means the extent of human beings' contact with pollutants within one day. CFD methodologies of passive pollutant dispersion modeling are successfully validated by wind tunnel data in Meroney et al. (1996). As a novelty, the two-main-vortex pattern start appearing in full-scale street canyons as H/W changes from 4 to 5, however previous studies using wind-tunnel-scale models (H=6cm) reported two to five vortexes as H/W=2-5. This finding is validated by both smoke visualization in scale-model outdoor field experiments (H=1.2m, W=0.6m) and CFD simulations of Reynolds number independence. Cases with two main vortexes (H/W=5-6) experience much larger daily pollutant exposure (~103-104mg/m3/day) than those with single main vortex as H/W=1-4 (~101-102mg/m3/day). Moreover leeward-side pollutant exposures are much larger than windward-side as H/W=1-4 while oppositely as H/W=5-6. Assuming a general population density, the total iF is 485-803ppm as H/W=1, 2020-12051ppm as H/W=2-4, and 51112-794026ppm as H/W=5-6. With a single elevated pollutant source, cases with viaducts experience significantly smaller pollutant exposures than cases without viaducts. Road barriers slightly increase pollutant exposure in near-road buildings with H/W=1 while reduce a little as H/W=3 and 5. Two-source cases can experience 2.60-5.52 times pollutant exposure as great as single-source cases.


Assuntos
Poluentes Atmosféricos/análise , Cidades , Exposição Ambiental/análise , Emissões de Veículos/análise , Humanos , Modelos Teóricos , Ruído , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA