Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
Nano Lett ; 24(42): 13315-13323, 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39382138

RESUMO

Optical magnetic dipole (MD) emission predominantly relies on emitters with significant MD transitions, which, however, rarely exist in nature. Here, we propose a strategy to transform electric dipole (ED) emission to a magnetic one by elegantly coupling an ED emitter to a silicon nanoparticle exhibiting a strong MD resonance. This emission mode transformation enables an artificially ideal magnetic dipole source with an MD purity factor of up to 99%. The far-field emission patterns of such artificial MD sources were experimentally measured, which unambiguously resolved their magnetic-type emission origin. This study opens the path to achieving ideal magnetic dipole emission with nonmagnetic emitters, largely extending the availability of magnetic light emitters conventionally limited by nature. Beyond the fundamental significance in science, we anticipate that this study will also facilitate the development of magnetic optical nanosource and enable potential photonic applications relying on magnetic light emission.

2.
Nano Lett ; 2024 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-39440847

RESUMO

Since the invention of lasers, research on the luminescence of crystalline silicon (c-Si) has been a longstanding challenge in the field of photonics. Recent advancements in nanofabrication technology, coupled with in-depth investigations into optical resonance and carrier dynamics, have enabled the realization of efficient luminescence in c-Si.

3.
ACS Nano ; 18(29): 19099-19109, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39001858

RESUMO

Polarization plays a paramount role in scaling the optical network capacity. Anisotropic two-dimensional (2D) materials offer opportunities to exploit optical polarization-sensitive responses in various photonic and optoelectronic applications. However, the exploration of optical anisotropy in fiber in-line devices, critical for ultrafast pulse generation and modulation, remains limited. In this study, we present a fiber-integrated device based on a single-crystalline tellurene nanosheet. Benefiting from the chiral-chain crystal lattice and distinct optical dichroism of tellurene, multifunctional optical devices possessing diverse excellent properties can be achieved. By inserting the in-line device into a 1.5 µm fiber laser cavity, we generated both linearly polarized and dual-wavelength mode-locking pulses with a degree of polarization of 98% and exceptional long-term stability. Through a twisted configuration of two tellurene nanosheets, we realized an all-optical switching operation with a fast response. The multifunctional device also serves as a broadband photodetector. Notably, bipolar polarization encoding communication at 1550 nm can be achieved without any external voltage. The device's multifunctionality and stability in ambient environments established a promising prototype for integrating polarization as an additional physical dimension in fiber optical networks, encompassing diverse applications in light generation, modulation, and detection.

4.
Kaohsiung J Med Sci ; 40(7): 631-641, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38826147

RESUMO

Autophagy is a self-recycling machinery to maintain cellular homeostasis by degrading harmful materials in the cell. Autophagy-related gene 5 (Atg5) is required for autophagosome maturation. However, the role of Atg5 in tumorigenesis under autophagy deficient conditions remains unclear. This study focused on the autophagy-independent role of Atg5 and the underlying mechanism in tumorigenesis. We demonstrated that knockout of autophagy-related genes including Atg5, Atg7, Atg9, and p62 in mouse embryonic fibroblast (MEF) cells consistently decreased cell proliferation and motility, implying that autophagy is required to maintain diverse cellular functions. An Atg7 knockout MEF (Atg7-/- MEF) cell line representing deprivation of autophagy function was used to clarify the role of Atg5 transgene in tumorigenesis. We found that Atg5-overexpressed Atg7-/-MEF (clone A) showed increased cell proliferation, colony formation, and migration under autophagy deficient conditions. Accordingly, rescuing the autophagy deficiency of clone A by overexpression of Atg7 gene shifts the role of Atg5 from pro-tumor to anti-tumor status, indicating the dual role of Atg5 in tumorigenesis. Notably, the xenograft mouse model showed that clone A of Atg5-overexpressed Atg7-/- MEF cells induced temporal tumor formation, but could not prolong further tumor growth. Finally, biomechanical analysis disclosed increased Wnt5a secretion and p-JNK expression along with decreased ß-catenin expression. In summary, Atg5 functions as a tumor suppressor to protect the cell under normal conditions. In contrast, Atg5 shifts to a pro-tumor status under autophagy deprivation conditions.


Assuntos
Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Autofagia , Carcinogênese , Proliferação de Células , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Camundongos , Proteína 7 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/metabolismo , Carcinogênese/genética , Carcinogênese/patologia , Movimento Celular/genética , Humanos , Fibroblastos/metabolismo , Camundongos Knockout
5.
Kaohsiung J Med Sci ; 40(7): 642-649, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38804615

RESUMO

Autophagy can be classified as degradative and secretory based on distinct functions. The small GTPase proteins Rab8a and Rab37 are responsible for secretory autophagy-mediated exocytosis of IL-1ß, insulin, and TIMP1 (tissue inhibitor of 54 metalloproteinase 1). Other Rab family members participating in secretory autophagy are poorly understood. Herein, we identified 26 overlapped Rab proteins in purified autophagosomes of mouse pancreatic ß-cell "Min-6" and human lung cancer cell "CL1-5-Q89L" with high secretory autophagy tendency by LC-MS/MS proteomics analysis. Six Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, Rab37, and Rab7a) were detected in autophagosomes of four cell lines, associating them with autophagy-related vesicle trafficking. We used CL1-5-Q89L cell line model to evaluate the levels of Rab proteins colocalization with autophagy LC3 proteins and presence in purified autophagosomes. We found five Rab proteins (Rab8a, Rab11b, Rab27a, Rab35, and Rab37) are highly expressed in the autophagosome compared to the normal control by immunoblotting under active secretion conditions. However, only Rab8a, Rab35, and Rab37 showing high colocalization with LC3 protein by cofocal microscopy. Despite the discrepancy between the image and immunoblotting analysis, our data sustains the speculation that Rab8a, Rab11b, Rab27a, Rab35, and Rab37 are possibly associated with the secretory autophagy machinery. In contrast, Rab7a shows low colocalization with LC3 puncta and low level in the autophagosome, suggesting it regulates different vesicle trafficking machineries. Our findings open a new direction toward exploring the role of Rab proteins in secretory autophagy-related cargo exocytosis and identifying the cargoes and effectors regulated by specific Rab proteins.


Assuntos
Autofagossomos , Autofagia , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Autofagia/fisiologia , Humanos , Animais , Camundongos , Autofagossomos/metabolismo , Linhagem Celular Tumoral , Proteínas Associadas aos Microtúbulos/metabolismo , Proteômica/métodos , Espectrometria de Massas em Tandem
6.
Light Sci Appl ; 13(1): 93, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38653978

RESUMO

Optical pulling provides a new degree of freedom in optical manipulation. It is generally believed that long-range optical pulling forces cannot be generated by the gradient of the incident field. Here, we theoretically propose and numerically demonstrate the realization of a long-range optical pulling force stemming from a self-induced gradient field in the manipulated object. In analogy to potential barriers in quantum tunnelling, we use a photonic band gap design in order to obtain the intensity gradients inside a manipulated object placed in a photonic crystal waveguide, thereby achieving a pulling force. Unlike the usual scattering-type optical pulling forces, the proposed gradient-field approach does not require precise elimination of the reflection from the manipulated objects. In particular, the Einstein-Laub formalism is applied to design this unconventional gradient force. The magnitude of the force can be enhanced by a factor of up to 50 at the optical resonance of the manipulated object in the waveguide, making it insensitive to absorption. The developed approach helps to break the limitation of scattering forces to obtain long-range optical pulling for manipulation and sorting of nanoparticles and other nano-objects. The developed principle of using the band gap to obtain a pulling force may also be applied to other types of waves, such as acoustic or water waves, which are important for numerous applications.

7.
Autophagy ; 20(6): 1444-1446, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38294001

RESUMO

Macroautophagy/autophagy acts as an anti-tumor mechanism in early cancer stages but promotes growth in established tumors. Similarly, miRNAs function as tumor suppressors or oncogenes, depending on their target genes. This reciprocal relationship between autophagy and miRNAs is a well-studied area, primarily focused on how miRNAs regulate autophagy-related genes. Our research provides innovative insights into how autophagy selectively controls miRNAs. For instance, MIR224 is preferentially degraded within autophagosomes, leading to the upregulation of SMAD4 and suppressing hepatocellular carcinoma (HCC) tumorigenesis. Conversely, autophagy positively regulates MIR449A by degrading EP300/p300 to activate FOXO1 and facilitate MIR449A transcription in colorectal cancer (CRC). In conclusion, our findings reveal the role of autophagy in maintaining the cellular balance of two miRNAs to mitigate tumorigenic stresses and highlight that autophagy-regulated miRNA profiles may serve as diagnostic and therapeutic markers for cancer development.


Assuntos
Autofagia , Homeostase , MicroRNAs , Neoplasias , Autofagia/genética , Autofagia/fisiologia , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/patologia , Regulação Neoplásica da Expressão Gênica
8.
Aging (Albany NY) ; 15(23): 13901-13919, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38078880

RESUMO

BACKGROUND: Cuproptosis is a new type of programmed cell death involved in the regulation of neuroendocrine tumors, immune microenvironment, and substance metabolism. However, the role of cuproptosis-related genes (CRGs) in Hepatocellular carcinoma (HCC) remains unclear. METHOD: Through multiple bioinformatics analysis, we constructed a prognostic gene model and competing endogenous RNA (ceRNA) network. The correlation between CRGs and prognosis, immune infiltration, immune checkpoints, microsatellite instability (MSI) and tumor mutational burden (TMB) was analyzed by Kaplan-Meier curve, univariate Cox, multivariate regression, and Spearman's analysis in HCC patients. Besides, the qRT-PCR and immunohistochemistry assays were used to determine prognostic CRGs mRNA and protein expression in HCC. RESULTS: We established a novel 3-gene signature related to CRGs for evaluating the prognosis of HCC patients. HCC patients with high risk scores had a poor prognosis with an area under the curve of 0.737, 0.646, and 0.634 on 1-year, 3-year, and 5-year receiver operating characteristic curves. Significant correlation was observed between prognostic CRGs and immune infiltration, immune checkpoints, MSI and TMB. We also developed five ceRNA networks to regulate the occurrence and progression of HCC. CDKN2A, DLAT, and PDHA1 protein expression was up-regulated in HCC versus normal tissues. Besides, the mRNA expression levels of CDKN2A, DLAT, GLS, and PDHA1 were elevated in the HCC cell lines compared to the normal liver cell lines. CONCLUSIONS: This novel prognostic CRGs signature could be accurately predict the prognosis of patients with HCC. The ceRNA regulatory network might be potential prognostic biomarkers and therapeutic targets for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Prognóstico , RNA Endógeno Competitivo , Neoplasias Hepáticas/genética , RNA , RNA Mensageiro/genética , Apoptose , Proteínas Inibidoras de Quinase Dependente de Ciclina , Instabilidade de Microssatélites , Cobre , Microambiente Tumoral
9.
J Nutr Biochem ; 121: 109438, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666476

RESUMO

Combination therapies to induce mixed-type cell death and synthetic lethality have the potential to overcome drug resistance in cancer. In this study, we demonstrated that the curcumin-enhanced cytotoxicity of cisplatin/carboplatin in combination with gemcitabine was associated with Aurora A suppression-mediated G2/M arrest, and thus apoptosis, as well as MEK/ERK-mediated autophagy in human bladder cancer cells. Animal study data confirmed that curcumin combined with cisplatin/gemcitabine reduced tumorigenesis of xenograft in mice and this phenomenon was associated with elevated expressions of p-ERK and reduced p-Aurora A in tumors. Gene analyses using data repositories further revealed that reduced Aurora A expression alone did not significantly elevate the sensitivity of human bladder carcinoma cells to these anticancer drugs. Unlike other major cancer types, human bladder urothelial carcinoma tissue coexpressed higher AURKA and lower MAP1LC3B than normal tissue, and reduced Aurora A and induction of autophagy have been clinically associated with a better prognosis in patients with early but not advanced stage bladder cancer. Therefore, our results suggest that treatment strategies can utilize the synthetic lethal pair to concurrently suppress oncogenic Aurora A and induce autophagy by coadministrating curcumin with anticancer drugs for early-stage bladder cancer with high expression of Aurora A.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37486841

RESUMO

Nonrigid registration of medical images is formulated usually as an optimization problem with the aim of seeking out the deformation field between a referential-moving image pair. During the past several years, advances have been achieved in the convolutional neural network (CNN)-based registration of images, whose performance was superior to most conventional methods. More lately, the long-range spatial correlations in images have been learned by incorporating an attention-based model into the transformer network. However, medical images often contain plural regions with structures that vary in size. The majority of the CNN-and transformer-based approaches adopt embedding of patches that are identical in size, disallowing representation of the inter-regional structural disparities within an image. Besides, it probably leads to the structural and semantical inconsistencies of objects as well. To address this issue, we put forward an innovative module called region-based structural relevance embedding (RSRE), which allows adaptive embedding of an image into unequally-sized structural regions based on the similarity of self-constructing latent graph instead of utilizing patches that are identical in size. Additionally, a transformer is integrated with the proposed module to serve as an adaptive region-based transformer (ART) for registering medical images nonrigidly. As demonstrated by the experimental outcomes, our ART is superior to the advanced nonrigid registration approaches in performance, whose Dice score is 0.734 on the LPBA40 dataset with 0.318% foldings for deformation field, and is 0.873 on the ADNI dataset with 0.331% foldings.

11.
Autophagy ; : 1-2, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37151129

RESUMO

RAB37 GTPase regulates cargo exocytosis by cycling between an inactive GDP-bound form and an active GTP-bound form. We reveal that RAB37 simultaneously regulates autophagy activation and tissue inhibitor of metalloproteinase 1 (TIMP1) secretion in lung cancer cells under starvation conditions. TIMP1, an inflammatory cytokine, is a known inhibitory molecule of matrix metalloproteinases matrix metalloproteinase 9 and suppresses the mobility of lung cancer cells both in vitro and in vivo through conventional exocytosis under serum-free conditions. Notably, we disclosed that secretory autophagy participates in TIMP1 secretion in a RAB37- and Sec22b-dependent manner. Sec22b, a SNARE family protein, participates in vesicle and membrane fusion of secretory autophagy. Knockdown of Sec22b decreased TIMP1 secretion and cell motility but did not affect cell proliferation under starvation conditions. We confirmed that starvation-activated RAB37 accompanied by Sec22b is essential for secretory autophagy to further enhance TIMP1 exocytosis. We further use an off-label drug amiodarone to demonstrate that autophagy induction facilitates TIMP1 secretion and suppresses the motility and metastasis of lung cancer cells in a RAB37-dependent manner in the lung-to-lung mouse model. In conclusion, we demonstrated that the RAB37 activation plays a pivotal regulatory role in secretory autophagy for TIMP1 secretion in lung cancer.Abbreviations: ATG: autophagy-related gene; GDP: guanosine diphosphate; GTP: guanosine triphosphate; LC3: microtubule-associated protein 1A/1B-light chain 3; SNARE: soluble N-ethylmaleimide-sensitive-factor attachment protein receptor; TIMP1: tissue inhibitor matrix metalloproteinase 1.

12.
Inorg Chem ; 62(23): 9259-9271, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37257171

RESUMO

The construction of type-II or S-scheme heterojunctions can effectively accelerate the directional migration of charge carriers and inhibit the recombination of electron-hole pairs to improve the catalytic performance of the composite catalyst; therefore, the construction and formation mechanism of a heterojunction are worth further investigation. Herein, Cu2O@Cu4(SO4)(OH)6·H2O core-shell polyhedral heterojunctions were fabricated via in situ etching Cu2O with octahedral, cuboctahedral, and cubic shapes by sodium thiosulfate (Na2S2O3). Cu2O@Cu4(SO4)(OH)6·H2O polyhedral heterojunctions demonstrated obviously enhanced sterilization and degradation performance than the corresponding single Cu2O polyhedra and Cu4(SO4)(OH)6·H2O. When Cu2O with a different morphology contacts with Cu4(SO4)(OH)6·H2O, a built-in electric field is established at the interface due to the difference in Fermi level (Ef); meanwhile, the direction of band bending and the band alignment are determined. These lead to the different migration pathways of electrons and holes, and thereby, a type-II or S-scheme heterojunction is constructed. The results showed that octahedral o-Cu2O@Cu4(SO4)(OH)6·H2O is an S-scheme heterojunction; however, cuboctahedral co-Cu2O@Cu4(SO4)(OH)6·H2O and cubic c-Cu2O@Cu4(SO4)(OH)6·H2O are type-II heterojunctions. By means of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), diffuse reflectance spectra (DRS), and Mott-Schottky analyses, the band alignments, Fermi levels, and band offsets (ΔECB, ΔEVB) of Cu2O@Cu4(SO4)(OH)6·H2O polyhedral heterojunctions were estimated; the results indicated that the catalytic ability of the composite catalyst is determined by the type of heterojunction and the sizes of band offsets. Cubic c-Cu2O@Cu4(SO4)(OH)6·H2O has the strongest driving force (namely, biggest band offsets) to accelerate charge migration and effectively separate charge carriers, so it exhibits the strongest catalytic bactericidal and degrading abilities.

13.
Fitoterapia ; 168: 105515, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37094723

RESUMO

Daedracoflavan A-E (1-5), five new flavonoids were isolated from the resin of Daemonorops draco. Their structures including absolute configurations were established by using spectroscopic and computational methods. All the compounds are new chalcones with the same retro-dihydrochalcone skeleton. Compound 1 features the presence of a cyclohexadienone unit originating from a benzene ring, and the ketone group of C-9 reduced to a hydroxyl group. The bioactivity of all isolated compounds was evaluated in kidney fibrosis and found that compound 2 could dose-dependently inhibit the expression of fibronectin, collagen I, and α-SMA in TGF-ß1-induced rat kidney proximal tubular cells (NRK-52E). Interestingly, the replacement of a proton by a hydroxyl group at C-4' seems to play a crucial role in anti-renal fibrosis activity.


Assuntos
Chalconas , Ratos , Animais , Estrutura Molecular , Chalconas/farmacologia , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Fibrose
14.
Apoptosis ; 28(5-6): 769-782, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36882663

RESUMO

Recent studies have indicated that pyroptosis may participate in the regulation of tumorigenesis and immune microenvironment. However, the role of pyroptosis-related genes (PRGs) in pancreatic adenocarcinoma (PAAD) remains unclear. Through multiple bioinformatics analysis, we constructed a prognostic gene model and competing endogenous RNA network. The correlation between PRGs and prognosis, immune infiltration, immune checkpoints, and tumor mutational burden was analyzed by Kaplan-Meier curve, univariate Cox, multivariate regression, and Spearman's analysis in PAAD patients. The qRT-PCR, Western blotting, CCK-8, Wound healing, and Transwell assay were applied to examine the role of CASP6 in PANC-1 cell. Thirty-one PRGs were upregulated in PAAD. Functional enrichment analysis revealed that the PRGs were mainly involved in pyroptosis, NOD-like receptor signaling pathway, and response to bacteria. We established a novel 4-gene signature related to PRGs for evaluating the prognosis of PAAD patients. Patients with PAAD in the low-risk group had a better prognosis than those in the high-risk group. The nomogram suggested that the 1-, 3-, and 5-years survival probability exhibited robust predictive performance. Significant correlation was observed between prognostic PRGs and immune infiltration, immune checkpoints, and tumor mutational burden. We first identified the potential competing endogenous RNA regulatory axis in PAAD: lncRNA PVT1/hsa-miR-16-5p/CASP6/CASP8. Moreover, knockdown of CASP6 dramatically inhibited the proliferation, migration, and invasion ability of PANC-1 cell in vitro. In conclusion, CASP6 could be a potential biomarker, promoting the occurrence and progression in PAAD. The lncRNA PVT1/hsa-miR-16-5p/CASP6/CASP8 regulatory axis plays an vital role in regulating the anti-tumor immune responses for PAAD.


Assuntos
Adenocarcinoma , MicroRNAs , Neoplasias Pancreáticas , RNA Longo não Codificante , Humanos , Adenocarcinoma/genética , Prognóstico , Neoplasias Pancreáticas/genética , Piroptose/genética , RNA Longo não Codificante/genética , Apoptose , Tomada de Decisão Clínica , Microambiente Tumoral/genética , Neoplasias Pancreáticas
15.
Kaohsiung J Med Sci ; 39(5): 489-500, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36866653

RESUMO

Formosanin C (FC) is a natural compound extracted from Paris formosana Hayata with anticancer activity. FC induces both autophagy and apoptosis in human lung cancer cells. FC-induced depolarization of mitochondrial membrane potential (MMP) may trigger mitophagy. In this study, we clarified the effect of FC on autophagy, mitophagy, and the role of autophagy in FC-related cell death and motility. We found FC caused the continuous increase of LC3 II (representing autophagosomes) from 24 to 72 h without degradation after treatment of lung and colon cancer cells, indicating that FC blocks autophagic progression. In addition, we confirmed that FC also induces early stage autophagic activity. Altogether, FC is not only an inducer but also a blocker of autophagy progression. Moreover, FC increased MMP accompanied by overexpression of COX IV (mitochondria marker) and phosphorylated Parkin (p-Parkin, mitophagy marker) in lung cancer cells, but no colocalization of LC3 with COX IV or p-Parkin was detected under confocal microscopy. Moreover, FC could not block CCCP (mitophagy inducer)-induced mitophagy. These results imply that FC disrupts mitochondria dynamics in the treated cells, and the underlying mechanism deserves further exploration. Functional analysis reveals that FC suppresses cell proliferation and motility through apoptosis and EMT-related pathway, respectively. In conclusion, FC acts as an inducer as well as a blocker of autophagy that results in cancer cell apoptosis and decreased motility. Our findings shed the light on the development of combined therapy with FC and clinical anticancer drugs for cancer treatment.


Assuntos
Autofagia , Neoplasias Pulmonares , Humanos , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proliferação de Células
16.
Aging (Albany NY) ; 15(6): 2066-2081, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36920183

RESUMO

BACKGROUND: Previous studies have revealed the significant roles of SHC SH2 domain-binding protein 1 (SHCBP1) in occurrence and progression of cancers, but there is no pan-cancer analysis of SHCBP1. METHODS: In this study, we explored the potential carcinogenic role of SHCBP1 across 33 tumors from the TCGA and GTEx databases. We investigated SHCBP1 expression, prognosis, genetic alterations, tumor mutational burden (TMB) score, microsatellite instability (MSI) and tumor microenvironment from TIMER2, GEPIA2, UALCAN and cBioPortal databases. Moreover, the cellular functions and potential mechanisms were evaluated by GO and KEGG analysis. Besides, the mRNA expression of SHCBP1 was examined using qRT-PCR assay in gastrointestinal cancers. RESULTS: SHCBP1 was significantly upregulated in various cancers, and apparent relationship existed between SHCBP1 and survival prognosis in patients. The TMB, MSI, and tumor microenvironment analysis indicated that SHCBP1 was closely related to immune checkpoints, immune targets, as well as CD4+ naive T cell, CD8+ T cell, and neutrophil. Moreover, the cellular functions of SHCBP1 were mainly in regulating cell cycle motor protein activity. In addition, we validated that SHCBP1 mRNA expression was over-expressed in gastrointestinal cancers. CONCLUSIONS: This study was the first to systematically determine the prognostic value of SHCBP1, providing a forward-looking perspective on immunotherapy and cellular processes in pan-cancer.


Assuntos
Neoplasias , Humanos , Prognóstico , Biomarcadores , Neoplasias/genética , Imunoterapia , Proteínas de Ciclo Celular , Instabilidade de Microssatélites , RNA Mensageiro/genética , Microambiente Tumoral/genética , Proteínas Adaptadoras da Sinalização Shc
18.
Sci Rep ; 13(1): 3372, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849576

RESUMO

In this study, the photothermal effect and up-conversion florescence imaging effect of gold nanobipyramids in liver cancer cells are investigated theoretically and experimentally to explore the photothermal ablation tumor therapy with higher photothermal conversion efficiency, shorter laser action time, smaller action range and lower laser power. The small-size gold nanobipyramids with good biocompatibility and infrared absorption peak located in the first biological window are synthesized. Femtosecond laser is focused on the nanobipyramids clusters in cells and the cells die after being irradiated for 20 s at a power as low as 3 mW. In contrast, the control cells die after irradiation with 30 mW laser for 3 min. The theoretical simulation results show that: under femtosecond laser irradiation, the local thermal effect of gold nanoclusters is produced in the range of hundreds of square nanometers and the temperature rises by 516 °C in 106 picoseconds. This therapy reduces the treatment time to seconds level, and the treatment range to square micrometer level, the power to milliwatt level. In this treatment, cells die by apoptosis rather than necrosis, which reduces inflammation. This result opens up a new way to develop photothermal ablation therapy with less side effects and more minimally invasive.


Assuntos
Neoplasias Hepáticas , Terapia Fototérmica , Humanos , Apoptose , Ouro , Lasers , Neoplasias Hepáticas/terapia
19.
ACS Appl Mater Interfaces ; 15(6): 7911-7918, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719898

RESUMO

Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.

20.
Autophagy ; 19(4): 1239-1257, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36109708

RESUMO

High blood glucose is one of the risk factors for metabolic disease and INS (insulin) is the key regulatory hormone for glucose homeostasis. Hypoinsulinemia accompanied with hyperglycemia was diagnosed in mice with pancreatic ß-cells exhibiting autophagy deficiency; however, the underlying mechanism remains elusive. The role of secretory autophagy in the regulation of metabolic syndrome is gaining more attention. Our data demonstrated that increased macroautophagic/autophagic activity leads to induction of insulin secretion in ß-cells both in vivo and in vitro under high-glucose conditions. Moreover, proteomic analysis of purified autophagosomes from ß-cells identified a group of vesicular transport proteins participating in insulin secretion, implying that secretory autophagy regulates insulin exocytosis. RAB37, a small GTPase, regulates vesicle biogenesis, trafficking, and cargo release. We demonstrated that the active form of RAB37 increased MAP1LC3/LC3 lipidation (LC3-II) and is essential for the promotion of insulin secretion by autophagy, but these phenomena were not observed in rab37 knockout (rab37-/-) cells and mice. Unbalanced insulin and glucose concentration in the blood was improved by manipulating autophagic activity using a novel autophagy inducer niclosamide (an antihelminthic drug) in a high-fat diet (HFD)-obesity mouse model. In summary, we reveal that secretory autophagy promotes RAB37-mediated insulin secretion to maintain the homeostasis of insulin and glucose both in vitro and in vivo.


Assuntos
Hiperglicemia , Células Secretoras de Insulina , Animais , Camundongos , Autofagia/fisiologia , Glucose/metabolismo , Secreção de Insulina , Proteômica , Proteínas rab de Ligação ao GTP/metabolismo , Insulina/metabolismo , Hiperglicemia/metabolismo , Células Secretoras de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA