Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009498

RESUMO

Graphene is emerging as a promising material for the integration in the most common Si platform, capable to convey some of its unique properties to fabricate novel photonic and optoelectronic devices. For many real functions and devices however, graphene absorption is too low and must be enhanced. Among strategies, the use of an optical resonant cavity was recently proposed, and graphene absorption enhancement was demonstrated, both, by theoretical and experimental studies. This paper summarizes our recent progress in graphene absorption enhancement by means of Si/SiO2-based Fabry-Perot filters fabricated by radiofrequency sputtering. Simulations and experimental achievements carried out during more than two years of investigations are reported here, detailing the technical expedients that were necessary to increase the single layer CVD graphene absorption first to 39% and then up to 84%. Graphene absorption increased when an asymmetric Fabry-Perot filter was applied rather than a symmetric one, and a further absorption increase was obtained when graphene was embedded in a reflective rather than a transmissive Fabry-Perot filter. Moreover, the effect of the incident angle of the electromagnetic radiation and of the polarization of the light was investigated in the case of the optimized reflective Fabry-Perot filter. Experimental challenges and precautions to avoid evaporation or sputtering induced damage on the graphene layers are described as well, disclosing some experimental procedures that may help other researchers to embed graphene inside PVD grown materials with minimal alterations.

2.
Nanotechnology ; 30(44): 445201, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31341097

RESUMO

Graphene has recently emerged as a promising candidate for a wide range of photonic and optoelectronic applications, with a high application potential in devices using infrared radiation. The optical absorption of 2D materials and graphene can be uniquely enhanced when they are embedded in optical resonant cavities, since optically-thin atomic-thickness absorbers do not perturb the cavity itself. Despite the many theoretical studies, experimental validation is still lagging behind. Here, large near infrared (NIR) absorption of unpatterned chemical vapor deposition graphene is experimentally demonstrated for the first time in a large area (1 inch) passive optical device by exploiting the enhancement of the electric field at the center of a Fabry-Perot cavity. Test devices were fabricated with single layer, double layer and five layers graphene, sandwiched between two almost symmetric Bragg mirrors deposited by radio frequency sputtering and consisting of alternate layers of Si and SiO2. A thin evaporated MgF2 overlayer was used to reduce sputtering induced damage on graphene layers. Measured absorption values, in the range of 37%-45%, were found in very good accordance with simulated ones. A maximum absorption of 45% was measured at 2345 nm for the double-layer graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA