Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 5(1): 829, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35982305

RESUMO

The ability to pursue targets in visually cluttered and distraction-rich environments is critical for predators such as dragonflies. Previously, we identified Centrifugal Small-Target Motion Detector 1 (CSTMD1), a dragonfly visual neuron likely involved in such target-tracking behaviour. CSTMD1 exhibits facilitated responses to targets moving along a continuous trajectory. Moreover, CSTMD1 competitively selects a single target out of a pair. Here, we conducted in vivo, intracellular recordings from CSTMD1 to examine the interplay between facilitation and selection, in response to the presentation of paired targets. We find that neuronal responses to both individual trajectories of simultaneous, paired targets are facilitated, rather than being constrained to the single, selected target. Additionally, switches in selection elicit suppression which is likely an important attribute underlying target pursuit. However, binocular experiments reveal these results are constrained to paired targets within the same visual hemifield, while selection of a target in one visual hemifield establishes ocular dominance that prevents facilitation or response to contralaterally presented targets. These results reveal that the dragonfly brain preattentively represents more than one target trajectory, to balance between attentional flexibility and resistance against distraction.


Assuntos
Odonatos , Animais , Atenção/fisiologia , Encéfalo , Neurônios/fisiologia , Odonatos/fisiologia
2.
J Neurosci ; 39(43): 8497-8509, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31519823

RESUMO

The visual world projects a complex and rapidly changing image onto the retina of many animal species. This presents computational challenges for those animals reliant on visual processing to provide an accurate representation of the world. One such challenge is parsing a visual scene for the most salient targets, such as the selection of prey amid a swarm. The ability to selectively prioritize processing of some stimuli over others is known as 'selective attention'. We recently identified a dragonfly visual neuron called 'Centrifugal Small Target Motion Detector 1' (CSTMD1) that exhibits selective attention when presented with multiple, equally salient targets. Here we conducted in vivo, electrophysiological recordings from CSTMD1 in wild-caught male dragonflies (Hemicordulia tau), while presenting visual stimuli on an LCD monitor. To identify the target selected in any given trial, we uniquely modulated the intensity of the moving targets (frequency tagging). We found that the frequency information of the selected target is preserved in the neuronal response, while the distracter is completely ignored. We also show that the competitive system that underlies selection in this neuron can be biased by the presentation of a preceding target on the same trajectory, even when it is of lower contrast than an abrupt, novel distracter. With this improved method for identifying and biasing target selection in CSTMD1, the dragonfly provides an ideal animal model system to probe the neuronal mechanisms underlying selective attention.SIGNIFICANCE STATEMENT We present the first application of frequency tagging to intracellular neuronal recordings, demonstrating that the frequency component of a stimulus is encoded in the spiking response of an individual neuron. Using this technique as an identifier, we demonstrate that CSTMD1 'locks on' to a selected target and encodes the absolute strength of this target, even in the presence of abruptly appearing, high-contrast distracters. The underlying mechanism also permits the selection mechanism to switch between targets mid-trial, even among equivalent targets. Together, these results demonstrate greater complexity in this selective attention system than would be expected in a winner-takes-all network. These results are in contrast to typical findings in the primate and avian brain, but display intriguing resemblance to observations in human psychophysics.


Assuntos
Atenção/fisiologia , Neurônios/fisiologia , Odonatos/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Animais , Masculino , Estimulação Luminosa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA