Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Am Stat Assoc ; 114(526): 610-621, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354180

RESUMO

Heterosis, or hybrid vigor, is the enhancement of the phenotype of hybrid progeny relative to their inbred parents. Heterosis is extensively used in agriculture, and the underlying mechanisms are unclear. To investigate the molecular basis of phenotypic heterosis, researchers search tens of thousands of genes for heterosis with respect to expression in the transcriptome. Difficulty arises in the assessment of heterosis due to composite null hypotheses and non-uniform distributions for p-values under these null hypotheses. Thus, we develop a general hierarchical model for count data and a fully Bayesian analysis in which an efficient parallelized Markov chain Monte Carlo algorithm ameliorates the computational burden. We use our method to detect gene expression heterosis in a two-hybrid plant-breeding scenario, both in a real RNA-seq maize dataset and in simulation studies. In the simulation studies, we show our method has well-calibrated posterior probabilities and credible intervals when the model assumed in analysis matches the model used to simulate the data. Although model misspecification can adversely affect calibration, the methodology is still able to accurately rank genes. Finally, we show that hyperparameter posteriors are extremely narrow and an empirical Bayes (eBayes) approach based on posterior means from the fully Bayesian analysis provides virtually equivalent posterior probabilities, credible intervals, and gene rankings relative to the fully Bayesian solution. This evidence of equivalence provides support for the use of eBayes procedures in RNA-seq data analysis if accurate hyperparameter estimates can be obtained.

2.
J Agric Biol Environ Stat ; 20(4): 614-628, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27147815

RESUMO

An important type of heterosis, known as hybrid vigor, refers to the enhancements in the phenotype of hybrid progeny relative to their inbred parents. Although hybrid vigor is extensively utilized in agriculture, its molecular basis is still largely unknown. In an effort to understand phenotypic heterosis at the molecular level, researchers are measuring transcript abundance levels of thousands of genes in parental inbred lines and their hybrid offspring using RNA sequencing (RNA-seq) technology. The resulting data allow researchers to search for evidence of gene expression heterosis as one potential molecular mechanism underlying heterosis of agriculturally important traits. The null hypotheses of greatest interest in testing for gene expression heterosis are composite null hypotheses that are difficult to test with standard statistical approaches for RNA-seq analysis. To address these shortcomings, we develop a hierarchical negative binomial model and draw inferences using a computationally tractable empirical Bayes approach to inference. We demonstrate improvements over alternative methods via a simulation study based on a maize experiment and then analyze that maize experiment with our newly proposed methodology. This article has supplementary material online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA