Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37333405

RESUMO

Cytokinesis challenges epithelial tissue homeostasis by generating forces that pull on neighboring cells via cell-cell junctions. Previous work has shown that junction reinforcement at the furrow in Xenopus laevis epithelia regulates the speed of furrowing1. This suggests the cytokinetic array that drives cell division is subject to resistive forces from epithelial neighbor cells. We show here that contractility factors accumulate in neighboring cells near the furrow during cytokinesis. Additionally, increasing neighbor cell stiffness, via ɑ-actinin overexpression, or contractility, through optogenetic Rho activation in one neighbor cell, slows or asymmetrically pauses furrowing, respectively. Notably, optogenetic stimulation of neighbor cell contractility on both sides of the furrow induces cytokinetic failure and binucleation. We conclude that forces from the cytokinetic array in the dividing cell are carefully balanced with restraining forces generated by neighbor cells, and neighbor cell mechanics regulate the speed and success of cytokinesis.

2.
J Cell Biol ; 221(8)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35708547

RESUMO

Many cells can generate complementary traveling waves of actin filaments (F-actin) and cytoskeletal regulators. This phenomenon, termed cortical excitability, results from coupled positive and negative feedback loops of cytoskeletal regulators. The nature of these feedback loops, however, remains poorly understood. We assessed the role of the Rho GAP RGA-3/4 in the cortical excitability that accompanies cytokinesis in both frog and starfish. RGA-3/4 localizes to the cytokinetic apparatus, "chases" Rho waves in an F-actin-dependent manner, and when coexpressed with the Rho GEF Ect2, is sufficient to convert the normally quiescent, immature Xenopus oocyte cortex into a dramatically excited state. Experiments and modeling show that changing the ratio of RGA-3/4 to Ect2 produces cortical behaviors ranging from pulses to complex waves of Rho activity. We conclude that RGA-3/4, Ect2, Rho, and F-actin form the core of a versatile circuit that drives a diverse range of cortical behaviors, and we demonstrate that the immature oocyte is a powerful model for characterizing these dynamics.


Assuntos
Actinas , Citoesqueleto , Proteínas Ativadoras de GTPase , Proteínas Proto-Oncogênicas , Proteínas rho de Ligação ao GTP , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Citocinese , Citoesqueleto/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Oócitos , Proteínas Proto-Oncogênicas/metabolismo , Xenopus , Proteínas rho de Ligação ao GTP/metabolismo
3.
Mol Biol Cell ; 33(8): ar73, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35594176

RESUMO

Interest in cortical excitability-the ability of the cell cortex to generate traveling waves of protein activity-has grown considerably over the past 20 years. Attributing biological functions to cortical excitability requires an understanding of the natural behavior of excitable waves and the ability to accurately quantify wave properties. Here we have investigated and quantified the onset of cortical excitability in Xenopus laevis eggs and embryos and the changes in cortical excitability throughout early development. We found that cortical excitability begins to manifest shortly after egg activation. Further, we identified a close relationship between wave properties-such as wave frequency and amplitude-and cell cycle progression as well as cell size. Finally, we identified quantitative differences between cortical excitability in the cleavage furrow relative to nonfurrow cortical excitability and showed that these wave regimes are mutually exclusive.


Assuntos
Excitabilidade Cortical , Animais , Ciclo Celular , Divisão Celular , Citoplasma , Xenopus laevis
4.
Curr Biol ; 31(24): 5613-5621.e5, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34739819

RESUMO

The cell cortex, comprised of the plasma membrane and underlying cytoskeleton, undergoes dynamic reorganizations during a variety of essential biological processes including cell adhesion, cell migration, and cell division.1,2 During cell division and cell locomotion, for example, waves of filamentous-actin (F-actin) assembly and disassembly develop in the cell cortex in a process termed "cortical excitability."3-7 In developing frog and starfish embryos, cortical excitability is generated through coupled positive and negative feedback, with rapid activation of Rho-mediated F-actin assembly followed in space and time by F-actin-dependent inhibition of Rho.7,8 These feedback loops are proposed to serve as a mechanism for amplification of active Rho signaling at the cell equator to support furrowing during cytokinesis while also maintaining flexibility for rapid error correction in response to movement of the mitotic spindle during chromosome segregation.9 In this paper, we develop an artificial cortex based on Xenopus egg extract and supported lipid bilayers (SLBs), to investigate cortical Rho and F-actin dynamics.10 This reconstituted system spontaneously develops two distinct types of self-organized cortical dynamics: singular excitable Rho and F-actin waves, and non-traveling oscillatory Rho and F-actin patches. Both types of dynamic patterns have properties and dependencies similar to the excitable dynamics previously characterized in vivo.7 These findings directly support the long-standing speculation that the cell cortex is a self-organizing structure and present a novel approach for investigating mechanisms of Rho-GTPase-mediated cortical dynamics.


Assuntos
Actinas , Células Artificiais , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Citocinese , Fuso Acromático/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
5.
Curr Biol ; 31(10): R553-R559, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-34033789

RESUMO

As the interface between the cell and its environment, the cell cortex must be able to respond to a variety of external stimuli. This is made possible in part by cortical excitability, a behavior driven by coupled positive and negative feedback loops that generate propagating waves of actin assembly in the cell cortex. Cortical excitability is best known for promoting cell protrusion and allowing the interpretation of and response to chemoattractant gradients in migrating cells. It has recently become apparent, however, that cortical excitability is involved in the response of the cortex to internal signals from the cell-cycle regulatory machinery and the spindle during cell division. Two overlapping functions have been ascribed to cortical excitability in cell division: control of cell division plane placement, and amplification of the activity of the small GTPase Rho at the equatorial cortex during cytokinesis. Here, we propose that cortical excitability explains several important yet poorly understood features of signaling during cell division. We also consider the potential advantages that arise from the use of cortical excitability as a signaling mechanism to regulate cortical dynamics in cell division.


Assuntos
Actinas , Citocinese , Actinas/metabolismo , Divisão Celular , Citoplasma/metabolismo , Transdução de Sinais
6.
Mol Biol Cell ; 28(25): 3634-3646, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28954866

RESUMO

During cytokinesis, the chromosomal passenger complex (CPC) promotes midzone organization, specifies the cleavage plane, and regulates furrow contractility. The localizations of the CPC are coupled to its cytokinetic functions. At the metaphase-to-anaphase transition, the CPC dissociates from centromeres and localizes to midzone microtubules and the equatorial cortex. CPC relocalization to the cell middle is thought to depend on MKlp2-driven, plus end-directed transport. In support of this idea, MKlp2 depletion impairs cytokinesis; however, cytokinesis failure stems from furrow regression rather than failed initiation of furrowing. This suggests that an alternative mechanism(s) may concentrate the CPC at the division plane. We show here that direct actin binding, via the inner centromere protein (INCENP), enhances CPC enrichment at the equatorial cortex, thus acting in tandem with MKlp2. INCENP overexpression rescues furrowing in MKlp2-depleted cells in an INCENP-actin binding-dependent manner. Using live-cell imaging, we also find that MKlp2-dependent targeting of the CPC is biphasic. MKlp2 targets the CPC to the anti-parallel microtubule overlap of the midzone, after which the MKlp2-CPC complex moves in a nondirected manner. Collectively, our work suggests that both actin binding and MKlp2-dependent midzone targeting cooperate to precisely position the CPC during mitotic exit, and that these pathways converge to ensure successful cleavage furrow ingression.


Assuntos
Divisão Celular/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Segregação de Cromossomos/fisiologia , Anáfase/fisiologia , Aurora Quinase B/metabolismo , Divisão Celular/genética , Centrômero/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos/metabolismo , Citocinese/fisiologia , Proteínas de Ligação a DNA/metabolismo , Células HeLa , Humanos , Cinesinas/metabolismo , Cinesinas/fisiologia , Metáfase/fisiologia , Proteínas dos Microfilamentos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo
7.
Curr Biol ; 26(5): 698-706, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26898472

RESUMO

The final steps of cell division are tightly coordinated in space and time, but whether mechanisms exist to couple the actin and microtubule (MT) cytoskeletons during anaphase and cytokinesis (C phase) is largely unknown. During anaphase, MTs are incorporated into an anti-parallel array termed the spindle midzone (midzone MTs), whereas F-actin and non-muscle myosin II, together with other factors, organize into the cleavage furrow [1]. Previous studies in somatic cells have shown that midzone MTs become highly stable after furrows have begun ingression [2], indicating that furrow-to-MT communication may occur. Midzone formation is also inhibited in fly spermatocytes that fail to form a cleavage furrow [3] and during monopolar cytokinesis when myosin contractility is blocked by blebbistatin [4]. We show here that midzone MT stabilization is dependent on actomyosin contraction, suggesting that there is active coordination between furrow ingression and microtubule dynamics. Midzone microtubule stabilization also depends on the kinase activity of Aurora B, the catalytic subunit of the chromosomal passenger complex (CPC), uncovering a feedback mechanism that couples furrowing with microtubule dynamics. We further show that the CPC scaffolding protein INCENP (inner centromere protein) binds actin, an interaction that is important for cytokinesis and for midzone MT stabilization following furrow ingression. Stabilization of midzone MTs with low amounts of Taxol rescues cytokinesis in INCENP actin-binding mutant-expressing cells. Collectively, our work demonstrates that the actin and microtubule cytoskeletons are coordinated during cytokinesis and suggests that the CPC is integral for coupling furrow ingression with midzone microtubule stabilization.


Assuntos
Citoesqueleto de Actina/fisiologia , Divisão Celular , Citocinese , Microtúbulos/fisiologia , Actinas/metabolismo , Anáfase , Linhagem Celular , Células HeLa , Humanos , Miosina Tipo II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA