Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Eur J Pharmacol ; 956: 175997, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37579967

RESUMO

Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic inflammatory cytokine that emerged as a pivotal regulator in the pathogenesis of several autoimmune diseases including rheumatoid arthritis (RA). MIF occurs in two immunologically distinct conformational isoforms, indicated as reduced (redMIF) and oxidized MIF (oxMIF) where the latter exerts disease-related activities. In this study we demonstrate the presence of circulating oxMIF in RA patients and investigate the in vivo effects of an oxMIF-neutralizing antibody in a murine model of RA. By advanced antibody engineering we generated the fully human anti-oxMIF antibody ON104 with abolished effector functions. The therapeutic potential of ON104 was tested in a model of Collagen-Induced Arthritis (CIA) in DBA/1j mice. At disease onset, the mice received ON104 twice a week for three weeks. Clinical symptoms were assessed daily, and histological examinations of the joints were performed at the end of the study. Antibody ON104, specifically targeting human and murine oxMIF, is highly affine and does not elicit effector functions in vitro. The treatment of CIA mice with ON104 profoundly modulated disease progression with marked amelioration of clinical signs of arthritis that was associated with reduced synovial and cartilage damage and reduced F4/80-positive macrophages in the joints. These data prove that oxMIF is a relevant target in a well-known model of human RA and its specific neutralization by the antibody ON104 ameliorates clinical and histological signs of the disease in the so-treated mice. Thus, ON104 represents a new and promising treatment option for RA and possibly other autoimmune diseases.


Assuntos
Artrite Experimental , Artrite Reumatoide , Fatores Inibidores da Migração de Macrófagos , Humanos , Camundongos , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Anticorpos Monoclonais/uso terapêutico , Camundongos Endogâmicos DBA
2.
Antimicrob Agents Chemother ; 66(5): e0231921, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35416708

RESUMO

Antibiotics are the mainstay of therapy for bacterial vaginosis (BV). However, the rate of treatment failure in patients with recurrent BV is about 50%. Herein, we investigated potential mechanisms of therapy failure, including the propensity of resistance formation and biofilm activity of metronidazole (MDZ), clindamycin (CLI), and PM-477, a novel investigational candidate that is a genetically engineered endolysin with specificity for bacteria of the genus Gardnerella. Determination of the MIC indicated that 60% of a panel of 22 Gardnerella isolates of four different species were resistant to MDZ, while all strains were highly susceptible to CLI and to the endolysin PM-477. Six strains, all of which were initially susceptible to MDZ, were passaged with MDZ or its more potent hydroxy metabolite. All of them generated full resistance after 5 to 10 passages, resulting in MICs of >512 µg/mL. In contrast, only a mild increase in MIC was found for PM-477. There was also no cross-resistance formation, as MDZ-resistant Gardnerella strains remained highly susceptible to PM-477, both in suspension and in preformed biofilms. Strains that were resistant to MDZ in suspension were also tolerant to MDZ at >2,048 µg/mL when growing as biofilm. All strains were susceptible to PM-477 when grown as preformed biofilms, at minimum biofilm eradication concentrations (MBECs) in the range of 1 to 4 µg/mL. Surprisingly, the MBEC of CLI was >512 µg/mL for 7 out of 9 tested Gardnerella strains, all of which were susceptible to CLI when growing in suspension. The observed challenges of MDZ and CLI due to resistance formation and ineffectiveness on biofilm, respectively, could be one explanation for the frequent treatment failures in uncomplicated or recurrent BV. Therefore, the high efficacy of PM-477 in eliminating Gardnerella in in vitro biofilms, as well as its high resilience to resistance formation, makes PM-477 a promising potential alternative for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.


Assuntos
Vaginose Bacteriana , Biofilmes , Clindamicina/farmacologia , Clindamicina/uso terapêutico , Endopeptidases , Feminino , Gardnerella , Gardnerella vaginalis , Humanos , Metronidazol/uso terapêutico , Vaginose Bacteriana/tratamento farmacológico , Vaginose Bacteriana/microbiologia
3.
Antibiotics (Basel) ; 11(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35052988

RESUMO

Quantification of the number of living cells in biofilm or after eradication treatments of biofilm, is problematic for different reasons. We assessed the performance of pre-treatment of DNA, planktonic cells and ex vivo vaginal biofilms of Gardnerella with propidium monoazide (PMAxx) to prevent qPCR-based amplification of DNA from killed cells (viability-qPCR). Standard PMAxx treatment did not completely inactivate free DNA and did not affect living cells. While culture indicated that killing of planktonic cells by heat or by endolysin was complete, viability-qPCR assessed only log reductions of 1.73 and 0.32, respectively. Therefore, we improved the standard protocol by comparing different (combinations of) parameters, such as concentration of PMAxx, and repetition, duration and incubation conditions of treatment. The optimized PMAxx treatment condition for further experiments consisted of three cycles, each of: 15 min incubation on ice with 50 µM PMAxx, followed by 15 min-long light exposure. This protocol was validated for use in vaginal samples from women with bacterial vaginosis. Up to log2.2 reduction of Gardnerella cells after treatment with PM-477 was documented, despite the complex composition of the samples, which might have hampered the activity of PM-477 as well as the quantification of low loads by viability-qPCR.

4.
Eur J Clin Pharmacol ; 77(10): 1473-1484, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33969434

RESUMO

PURPOSE: AT04A and AT06A are two AFFITOPE® peptide vaccine candidates being developed for the treatment of hypercholesterolemia by inducing proprotein convertase subtilisin/kexin type 9 (PCSK9)-specific antibodies. This study aimed to investigate safety, tolerability, antibody development, and reduction of low-density lipoprotein cholesterol (LDLc) following four subcutaneous immunizations. METHODS: This phase I, single-blind, randomized, placebo-controlled study was conducted in a total of 72 healthy subjects with a mean fasting LDLc level at baseline of 117.1 mg/dL (range 77-196 mg/dL). Each cohort enrolled 24 subjects to receive three priming immunizations at weeks 0, 4, and 8 and to receive a single booster immunization at week 60 of either AT04A, AT06A, or placebo. In addition to safety (primary objective), the antigenic peptide- and PCSK9-specific antibody response and the impact on LDLc were evaluated over a period of 90 weeks. RESULTS: The most common systemic treatment-related adverse events (AEs) reported were fatigue, headache, and myalgia in 75% of subjects in the AT06A group and 58% and 46% of subjects in the placebo and AT04A groups, respectively. Injection site reactions (ISR) representing 63% of all treatment-emergent adverse events (TEAEs), were transient and mostly of mild or moderate intensity and rarely severe (3%). Both active treatments triggered a robust, long-lasting antibody response towards the antigenic peptides used for immunization that optimally cross-reacted with the target epitope on PCSK9. In the AT04A group, a reduction in serum LDLc was observed with a mean peak reduction of 11.2% and 13.3% from baseline compared to placebo at week 20 and 70 respectively, and over the whole study period, the mean LDLc reduction for the AT04A group vs. placebo was -7.2% (95% CI [-10.4 to -3.9], P < 0.0001). In this group, PCSK9 target epitope titers above 50 were associated with clinically relevant LDLc reductions with an individual maximal decrease of 39%. CONCLUSIONS: Although both AT04A and AT06 were safe and immunogenic, only AT04A demonstrated significant LDLc-lowering activity, justifying further development. TRIAL REGISTRATION: EudraCT: 2015-001719-11. ClinicalTrials.gov Identifier: NCT02508896.


Assuntos
Hipercolesterolemia/tratamento farmacológico , Pró-Proteína Convertase 9/imunologia , Vacinas de Subunidades Antigênicas/uso terapêutico , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Método Simples-Cego , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/efeitos adversos , Adulto Jovem
5.
Pathogens ; 10(1)2021 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-33435575

RESUMO

Bacterial vaginosis is characterized by an imbalance of the vaginal microbiome and a characteristic biofilm formed on the vaginal epithelium, which is initiated and dominated by Gardnerella bacteria, and is frequently refractory to antibiotic treatment. We investigated endolysins of the type 1,4-beta-N-acetylmuramidase encoded on Gardnerella prophages as an alternative treatment. When recombinantly expressed, these proteins demonstrated strong bactericidal activity against four different Gardnerella species. By domain shuffling, we generated several engineered endolysins with 10-fold higher bactericidal activity than any wild-type enzyme. When tested against a panel of 20 Gardnerella strains, the most active endolysin, called PM-477, showed minimum inhibitory concentrations of 0.13-8 µg/mL. PM-477 had no effect on beneficial lactobacilli or other species of vaginal bacteria. Furthermore, the efficacy of PM-477 was tested by fluorescence in situ hybridization on vaginal samples of fifteen patients with either first time or recurring bacterial vaginosis. In thirteen cases, PM-477 killed the Gardnerella bacteria and physically dissolved the biofilms without affecting the remaining vaginal microbiome. The high selectivity and effectiveness in eliminating Gardnerella, both in cultures of isolated strains as well as in clinically derived samples of natural polymicrobial biofilms, makes PM-477 a promising alternative to antibiotics for the treatment of bacterial vaginosis, especially in patients with frequent recurrence.

6.
Eur Heart J ; 38(32): 2499-2507, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28637178

RESUMO

AIMS: Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising therapeutic target for the treatment of hypercholesterolaemia and atherosclerosis. PCSK9 binds to the low density lipoprotein receptor and enhances its degradation, which leads to the reduced clearance of low density lipoprotein cholesterol (LDLc) and a higher risk of atherosclerosis. In this study, the AT04A anti-PCSK9 vaccine was evaluated for its therapeutic potential in ameliorating or even preventing coronary heart disease in the atherogenic APOE*3Leiden.CETP mouse model. METHODS AND RESULTS: Control and AT04A vaccine-treated mice were fed western-type diet for 18 weeks. Antibody titres, plasma lipids, and inflammatory markers were monitored by ELISA, FPLC, and multiplexed immunoassay, respectively. The progression of atherosclerosis was evaluated by histological analysis of serial cross-sections from the aortic sinus. The AT04A vaccine induced high and persistent antibody levels against PCSK9, causing a significant reduction in plasma total cholesterol (-53%, P < 0.001) and LDLc compared with controls. Plasma inflammatory markers such as serum amyloid A (SAA), macrophage inflammatory protein-1ß (MIP-1ß/CCL4), macrophage-derived chemokine (MDC/CCL22), cytokine stem cell factor (SCF), and vascular endothelial growth factor A (VEGF-A) were significantly diminished in AT04A-treated mice. As a consequence, treatment with the AT04A vaccine resulted in a decrease in atherosclerotic lesion area (-64%, P = 0.004) and aortic inflammation as well as in more lesion-free aortic segments (+119%, P = 0.026), compared with control. CONCLUSIONS: AT04A vaccine induces an effective immune response against PCSK9 in APOE*3Leiden.CETP mice, leading to a significant reduction of plasma lipids, systemic and vascular inflammation, and atherosclerotic lesions in the aorta.


Assuntos
Aterosclerose/prevenção & controle , Inibidores de PCSK9 , Vacinas de Subunidades Antigênicas/imunologia , Animais , Anticorpos/metabolismo , Doenças da Aorta/prevenção & controle , Apolipoproteína E3/deficiência , Biomarcadores/metabolismo , HDL-Colesterol/metabolismo , Doença das Coronárias/prevenção & controle , Modelos Animais de Doenças , Feminino , Hipercolesterolemia/imunologia , Hipercolesterolemia/prevenção & controle , Molécula 1 de Adesão Intercelular/metabolismo , Camundongos Transgênicos , Proteína 3 que Contém Domínio de Pirina da Família NLR/imunologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Placa Aterosclerótica/prevenção & controle , Pró-Proteína Convertase 9/imunologia , Vacinas de Subunidades Antigênicas/administração & dosagem , Vasculite/imunologia , Vasculite/prevenção & controle
7.
Immunol Lett ; 179: 85-94, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27639826

RESUMO

Obesity causes insulin resistance via a chronic low-grade inflammation. This inflammation is characterized by elevated pro-inflammatory markers and macrophage accumulation in the adipose tissue (AT). AT inflammation is a key factor causing insulin resistance and thus type 2 diabetes, both linked to atherosclerotic cardiovascular disease. Osteopontin (OPN), a well-known inflammatory cytokine, is involved in obesity-linked complications including AT inflammation, insulin resistance, atherosclerosis and CVD. During inflammation, OPN is proteolytically cleaved by matrix metalloproteinases or thrombin leading to increased OPN activity. Therefore, OPN provides a new interesting target for immunological prevention and treatment of obesity-associated diseases. The aim of our study was to evaluate peptide-based vaccines against integrin binding sites of OPN and to examine whether these active immunotherapies are functional in reducing metabolic tissue inflammation, insulin resistance, and atherosclerosis in a cardio-metabolic (Ldlr-/- mice) and a diet-induced obesity model (WT mice). However, atherosclerosis, insulin resistance and AT inflammation were not diminished after treatment with OPN-derived peptides in murine models. Lack of efficacy was based on a failure to induce antibodies capable to bind epitopes in the context of functional OPN protein. In conclusion, our data point to unexpected challenges in the immunotherapeutic targeting of adhesive motives, such as RGD containing sequences, on endogenous proteins.


Assuntos
Sítios de Ligação/imunologia , Cardiopatias/metabolismo , Integrinas/metabolismo , Doenças Metabólicas/metabolismo , Osteopontina/imunologia , Osteopontina/metabolismo , Fragmentos de Peptídeos/imunologia , Animais , Anticorpos/sangue , Anticorpos/imunologia , Aterosclerose/etiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Biomarcadores , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Cardiopatias/sangue , Cardiopatias/etiologia , Cardiopatias/terapia , Imunização , Inflamação/etiologia , Inflamação/metabolismo , Resistência à Insulina , Integrinas/química , Masculino , Doenças Metabólicas/sangue , Doenças Metabólicas/etiologia , Doenças Metabólicas/terapia , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Osteopontina/química , Fragmentos de Peptídeos/administração & dosagem , Ligação Proteica , Receptores de LDL/deficiência
8.
J Neuroinflammation ; 12: 150, 2015 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-26275910

RESUMO

BACKGROUND: Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by neuronal loss due to amyloid beta aggregations, neurofibrillary tangles, and prominent neuroinflammation. Recently, interference with neuroinflammation as a new therapeutic approach for AD treatment gained great interest. Microglia cells, one of the major contributors in neuroinflammation, are activated in response to misfolded proteins such as amyloid ß and cell debris leading to a sustained release of pro-inflammatory mediators. Especially, complement factor C5a and its receptor have been found to be up-regulated in microglia in the immediate surroundings of cerebral amyloid plaques and blocking of C5aR resulted in a reduction of pathological markers in a model of AD. Here, we investigate the effect of active vaccination against the complement factor C5a to interfere with neuroinflammation and neuropathologic alterations in a mouse model of AD. METHODS: Short antigenic peptides AFF1 and AFF2, which mimic a C-terminal epitope of C5a, were selected and formulated to vaccines. These vaccines are able to induce a highly specific antibody response to the target protein C5a. Tg2576 mice, a common model of AD, were immunized with these two C5a-peptide vaccines and the induced immune response toward C5a was analyzed by ELISA and Western blot analysis. The influence on memory retention was assessed by a contextual fear conditioning test. Microglia activation and amyloid plaque deposition in the brain was visualized by immunohistochemistry. RESULTS: Both C5a-targeting vaccines were highly immunogenic and induced sustained antibody titers against C5a. Tg2576 mice vaccinated at early stages of the disease showed significantly improved contextual memory accompanied by the reduction of microglia activation in the hippocampus and cerebral amyloid plaque load compared to control mice. Late-stage immunization also showed a decrease in the number of activated microglia, and improved memory function, however, had no influence on the amyloid ß load. CONCLUSION: C5a-peptide vaccines represent a safe and well-tolerated immunotherapy, which is able to induce a strong and specific immune response against the pro-inflammatory molecule C5a. In a mouse model of AD, C5a-peptide vaccines reduce microglia activation and thus neuroinflammation, which is supposed to lead to reduced neuronal dysfunction and AD symptomatic decline.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Vacinas contra Alzheimer/uso terapêutico , Complemento C5a/imunologia , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides/metabolismo , Animais , Complemento C5a/metabolismo , Medo , Feminino , Esquemas de Imunização , Inflamação/tratamento farmacológico , Inflamação/patologia , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Memória , Camundongos , Microglia/efeitos dos fármacos , Placa Amiloide/patologia , Desempenho Psicomotor , Vacinação , Vacinas de Subunidades Antigênicas/uso terapêutico
9.
J Med Microbiol ; 56(Pt 9): 1167-1173, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17761478

RESUMO

In view of the growing incidence and the high mortality of invasive aspergillosis and candidiasis, adequate diagnostic techniques permitting timely onset of treatment are of paramount importance. More than 90 % of all invasive fungal infections in immunocompromised individuals can be attributed to Candida and Aspergillus species. To date, standardized techniques permitting rapid, sensitive and, no less importantly, economic screening for the clinically most relevant fungi are lacking. In the present report, a real-time quantitative PCR assay, developed for the detection of the most common pathogenic Candida and Aspergillus species, is described. The single-reaction PCR assay targets a judiciously selected region of the 28S subunit of the fungal rDNA gene. The unique design of the universal primer/probe system, including a pan-Aspergillus and pan-Candida (Pan-AC) hydrolysis probe, facilitates the detection of numerous Aspergillus species (e.g. Aspergillus fumigatus, Aspergillus flavus, Aspergillus niger, Aspergillus terreus, Aspergillus versicolor and Aspergillus nidulans) and Candida species (e.g. Candida albicans, Candida glabrata, Candida krusei, Candida tropicalis, Candida parapsilosis, Candida kefyr, Candida guilliermondii, Candida lusitaniae and Candida dubliniensis). The assay permits highly reproducible detection of 10 fg fungal DNA, which corresponds to a fraction of a fungal genome, and facilitates accurate quantification of fungal load across a range of at least five logs. Upon standardization of the technique using cultured fungal strains, the applicability in the clinical setting was assessed by investigating a series of clinical specimens from patients with documented fungal infections (n=17). The Pan-AC assay provides an attractive and economic approach to the screening and monitoring of invasive aspergillosis and candidiasis, which is readily applicable to routine clinical diagnosis.


Assuntos
Aspergilose/diagnóstico , Aspergillus/genética , Candida/genética , Candidíase/diagnóstico , Reação em Cadeia da Polimerase/métodos , Aspergillus/classificação , Aspergillus/isolamento & purificação , Sequência de Bases , Candida/classificação , Candida/isolamento & purificação , Primers do DNA/genética , DNA Fúngico/genética , DNA Ribossômico/genética , Humanos , Dados de Sequência Molecular , RNA Ribossômico 28S/genética , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Biochim Biophys Acta ; 1758(11): 1759-67, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16979580

RESUMO

Human LANCL2, also known as Testis-specific Adriamycin Sensitivity Protein (TASP), is a member of the highly conserved and widely distributed lanthionine synthetase component C-like (LANCL) protein family. Expression studies of tagged LANCL2 revealed the major localization to the plasma membrane, juxta-nuclear vesicles, and the nucleus, in contrast to the homologue LANCL1 that was mainly found in the cytosol and nucleus. We identified the unique N-terminus of LANCL2 to function as the membrane anchor and characterized the relevant N-terminal myristoylation and a basic phosphatidylinositol phosphate-binding site. Interestingly, the non-myristoylated protein was confined to the nucleus indicating that the myristoylation targets LANCL2 to the plasma membrane. Cholesterol depletion by methyl-beta-cyclodextrin caused the partial dissociation of overexpressed LANCL2 from the plasma membrane in vitro, whereas in vivo we observed an enhanced cell detachment from the matrix. We found that overexpressed LANCL2 interacts with the cortical actin cytoskeleton and therefore may play a role in cytoskeleton reorganization and in consequence to cell detachment. Moreover, we confirmed previous data that LANCL2 overexpression enhances the cellular sensitivity to the anticancer drug adriamycin and found that this sensitivity is dependent on the myristoylation and membrane association of LANCL2.


Assuntos
Membrana Celular/metabolismo , Núcleo Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Proteínas de Membrana/metabolismo , Ácido Mirístico/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Antibióticos Antineoplásicos/farmacologia , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Membrana Celular/química , Núcleo Celular/metabolismo , Colesterol/metabolismo , Citoesqueleto/metabolismo , Relação Dose-Resposta a Droga , Humanos , Masculino , Proteínas de Membrana/química , Dados de Sequência Molecular , Ácido Mirístico/química , Proteínas Nucleares/química , Proteínas de Ligação a Fosfato , Ligação Proteica , Testículo/metabolismo , beta-Ciclodextrinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA