RESUMO
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
RESUMO
Planetary health is an emerging field that emphasises that humans depend on a healthy Earth for survival and, conversely, that the sustainability of Earth systems is dependent on human behaviours. In response to member demands for resources to support teaching and learning related to planetary health, the Consortium of Universities for Global Health (CUGH) convened a working group to develop a set of planetary health learning objectives (PHLOs) that would complement the existing ten CUGH global health learning objectives. The eight PHLOs feature Earth system changes, planetary boundaries, and climate change science; ecological systems and One Health; human health outcomes; risk assessment, vulnerability, and resilience; policy, governance, and laws (including the UN Framework Convention on Climate Change and the Paris Agreement); roles and responsibilities of governments, businesses, civil society organisations, other institutions, communities, and individuals for mitigation, adaptation, conservation, restoration, and sustainability; environmental ethics, human rights, and climate justice; and environmental literacy and communication. Educators who use the PHLOs as a foundation for teaching, curriculum design, and programme development related to the health-environment nexus will equip learners with a knowledge of planetary health science, interventions, and communication that is essential for future global health professionals.
Assuntos
Mudança Climática , Saúde Global , Saúde Global/educação , Humanos , Educação em SaúdeRESUMO
Emerging evidence indicates that chemical exposures in the environment are overlooked drivers of cardiovascular diseases (CVD). Recent evidence suggests that micro- and nanoplastic (MNP) particles derived largely from the chemical or mechanical degradation of plastics might represent a novel CVD risk factor. Experimental data in preclinical models suggest that MNPs can foster oxidative stress, platelet aggregation, cell senescence, and inflammatory responses in endothelial and immune cells while promoting a range of cardiovascular and metabolic alterations that can lead to disease and premature death. In humans, MNPs derived from various plastics, including polyethylene and polyvinylchloride, have been detected in atherosclerotic plaques and other cardiovascular tissues, including pericardia, epicardial adipose tissues, pericardial adipose tissues, myocardia, and left atrial appendages. MNPs have measurable levels within thrombi and seem to accumulate preferentially within areas of vascular lesions. Their presence within carotid plaques is associated with subsequent increased incidence of cardiovascular events. To further investigate the possible causal role of MNPs in CVD, future studies should focus on large, prospective cohorts assessing the exposure of individuals to plastic-related pollution, the possible routes of absorption, the existence of a putative safety limit, the correspondence between exposure and accumulation in tissues, the timing between accumulation and CVD development, and the pathophysiological mechanisms instigated by pertinent concentrations of MNPs. Data from such studies would allow the design of preventive, or even therapeutic, strategies. Meanwhile, existing evidence suggests that reducing plastic production and use will produce benefits for the environment and for human health. This goal could be achieved through the UN Global Plastics Treaty that is currently in negotiation.
Assuntos
Doenças Cardiovasculares , Microplásticos , Humanos , Nanopartículas/efeitos adversos , Exposição Ambiental/efeitos adversos , PlásticosRESUMO
A healthy ocean is essential for human health, and yet the links between the ocean and human health are often overlooked. By providing new medicines, technologies, energy, foods, recreation, and inspiration, the ocean has the potential to enhance human health and wellbeing. However, climate change, pollution, biodiversity loss, and inequity threaten both ocean and human health. Sustainable realisation of the ocean's health benefits will require overcoming these challenges through equitable partnerships, enforcement of laws and treaties, robust monitoring, and use of metrics that assess both the ocean's natural capital and human wellbeing. Achieving this will require an explicit focus on human rights, equity, sustainability, and social justice. In addition to highlighting the potential unique role of the healthcare sector, we offer science-based recommendations to protect both ocean health and human health, and we highlight the unique potential of the healthcare sector tolead this effort.
Assuntos
Mudança Climática , Oceanos e Mares , Humanos , Biodiversidade , Conservação dos Recursos Naturais , Setor de Assistência à Saúde , Direitos Humanos , Justiça Social , Desenvolvimento SustentávelRESUMO
Environmental stresses are increasingly recognized as significant risk factors for adverse health outcomes. In particular, various forms of pollution and climate change are playing a growing role in promoting noncommunicable diseases, especially cardiovascular disease. Given recent trends, global warming and air pollution are now associated with substantial cardiovascular morbidity and mortality. As a vicious cycle, global warming increases the occurrence, size, and severity of wildfires, which are significant sources of airborne particulate matter. Exposure to wildfire smoke is associated with cardiovascular disease, and these effects are underpinned by mechanisms that include oxidative stress, inflammation, impaired cardiac function, and proatherosclerotic effects in the circulation. In the first part of a 2-part series on pollution and cardiovascular disease, this review provides an overview of the impact of global warming and air pollution, and because of recent events and emerging trends specific attention is paid to air pollution caused by wildfires.
Assuntos
Poluição do Ar , Aquecimento Global , Incêndios Florestais , Humanos , Poluição do Ar/efeitos adversos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , Material Particulado/efeitos adversos , Fumaça/efeitos adversosRESUMO
Various forms of pollution carry a substantial burden with respect to increasing the risk of causing and exacerbating noncommunicable diseases, especially cardiovascular disease. The first part of this 2-part series on pollution and cardiovascular disease provided an overview of the impact of global warming and air pollution. This second paper provides an overview of the impact of water, soil, noise, and light pollution on the cardiovascular system. This review discusses the biological mechanisms underlying these effects and potential environmental biometrics of exposure. What is clear from both these pollution papers is that significant efforts and redoubled urgency are needed to reduce the sources of pollution in our environment, to incorporate environmental risk factors into medical education, to provide resources for research, and, ultimately, to protect those who are particularly vulnerable and susceptible.
Assuntos
Doenças Cardiovasculares , Poluição Ambiental , Humanos , Doenças Cardiovasculares/prevenção & controle , Poluição Ambiental/efeitos adversos , Ruído/efeitos adversos , Solo , Exposição Ambiental/efeitos adversos , Poluição da ÁguaRESUMO
Chinese children are exposed to broad environmental risks ranging from well-known hazards, such as pesticides and heavy metals, to emerging threats including many new man-made chemicals. Although anecdotal evidence suggests that the exposure levels in Chinese children are substantially higher than those of children in developed countries, a systematic assessment is lacking. Further, while these exposures have been linked to a variety of childhood diseases, such as respiratory, endocrine, neurological, behavioral, and malignant disorders, the magnitude of the associations is often unclear. This review provides a current epidemiologic overview of commonly reported environmental contaminants and their potential impact on children's health in China. We found that despite a large volume of studies on various topics, there is a need for more high-quality research and better-coordinated regional and national data collection. Moreover, prevention of such diseases will depend not only on training of environmental health professionals and enhanced research programs, but also on public education, legislation, and networking.
Assuntos
Saúde da Criança , Exposição Ambiental , Poluentes Ambientais , Humanos , China , Criança , Poluentes Ambientais/análise , Pré-Escolar , Praguicidas/análiseRESUMO
Background: Since the Industrial Revolution, humanity has amassed great wealth and achieved unprecedented material prosperity. These advances have come, however, at great cost to the planet. They are guided by an economic model that focuses almost exclusively on short-term gain, while ignoring natural capital and human capital. They have relied on the combustion of vast quantities of fossil fuels, massive consumption of the earth's resources, and production and environmental release of enormous quantities of chemicals, pesticides, fertilizers, and plastics. They have caused climate change, pollution, and biodiversity loss, the "Triple Planetary Crisis". They are responsible for more than 9 million premature deaths per year and for widespread disease - impacts that fall disproportionately upon the poor and the vulnerable. Goals: To map the human health impacts of climate change, pollution, and biodiversity loss. To outline a framework for assessing the health benefits of interventions against these threats. Findings: Actions taken by national governments and international agencies to mitigate climate change, pollution, and biodiversity loss can improve health, prevent disease, save lives, and enhance human well-being. Yet assessment of health benefits is largely absent from evaluations of environmental remediation programs. This represents a lost opportunity to quantify the full benefits of environmental remediation and to educate policy makers and the public. Recommendations: We recommend that national governments and international agencies implementing interventions against climate change, pollution, and biodiversity loss develop metrics and strategies for quantifying the health benefits of these interventions. We recommend that they deploy these tools in parallel with assessments of ecologic and economic benefits. Health metrics developed by the Global Burden of Disease (GBD) study may provide a useful starting point.Incorporation of health metrics into assessments of environmental restoration will require building transdisciplinary collaborations. Environmental scientists and engineers will need to work with health scientists to establish evaluation systems that link environmental and economic data with health data. Such systems will assist international agencies as well as national and local governments in prioritizing environmental interventions.
Assuntos
Poluição Ambiental , Recuperação e Remediação Ambiental , Humanos , Poluição Ambiental/prevenção & controle , Pessoal Administrativo , Altruísmo , BiodiversidadeRESUMO
Background: Rwanda, like many countries in sub-Saharan Africa, is still relatively early in development. Industrialization and urbanization are major drivers of the county's economic growth. Rwanda is also undergoing an epidemiological transition, from a pattern of morbidity and mortality dominated by infectious diseases to a pattern shaped by non-communicable diseases (NCDs). The rise in NCDs is due, in part, to increasing exposures to environmental hazards. These include emissions from the growing number of motor vehicles and toxic occupational exposures. Cardiovascular disease (CVD) is now an increasingly important cause of death in Rwanda, and ambient air pollution is a CVD risk factor of growing importance. Objectives: To quantify the burden of CVD attributable to air pollution in Rwanda and identify opportunities for prevention and control of air pollution and pollution-related disease. Methods: We relied on the 2019 Global Burden of Disease (GBD) study for information on levels, sources, and trends in household and ambient air pollution and the burden of pollution-related disease in Rwanda. Information on pollution sources was obtained from the Health Effects Institute State of Global Air 2019 report. Findings: An estimated 3,477 deaths (95% Uncertainty Interval [UI]: 2,500-4,600) in Rwanda in 2019 were attributable to air pollution-related CVD. Of these, 689 (UI: 283-1,300) deaths were from ambient air pollution-related CVD, while 2,788 (UI: 1,800-3,800) deaths were from household air pollution-related CVD. Conclusion: Rwanda is experiencing increased rates of disease and premature death from NCDs, including CVD, as the country grows economically. While household air pollution is still the top pollution-related cause of disease and premature death, rising levels of ambient air pollution are an increasingly important CVD risk factor. Recommendation: Actions taken now to curb rising levels of ambient air pollution will improve health, reduce CVD, increase longevity, and produce great economic benefit for Rwanda. The single most effective intervention against air pollution will be a rapid nationwide transition to renewable energy. We recommend additionally that Rwanda prioritize air pollution prevention and control, establish a robust, nationwide air monitoring network, support research on the health effects of air pollutants, and build national research capacity. The allocation of increased resources for rural and urban public health and health care will complement air pollution control measures and further reduce CVD. To incentivize a rapid transition to renewable energy in Rwanda and other nations, we recommend the creation of a new Global Green Development Fund.
Assuntos
Poluição do Ar , Doenças Cardiovasculares , Doenças Transmissíveis , Humanos , Doenças Cardiovasculares/epidemiologia , Expectativa de Vida , Ruanda/epidemiologia , Poluição do Ar/efeitos adversosRESUMO
Families increasingly raise questions about the use of genetically modified organism (GMO)-containing food products. These products are widely found in the US food supply but originate from a narrow list of crops. Although GMO technology could be used to increase the micronutrient content of foods, this does not occur in the United States; instead, GMO technology has been used to make crops resistant to chemical herbicides. As a result, herbicide use has increased exponentially. The World Health Organization's International Agency on Research for Cancer has determined that glyphosate, an herbicide widely used in producing GMO food crops, is a probable human carcinogen. Measurable quantities of glyphosate are detected in some GMO foods. Families who wish to minimize GMO food products can do so by focusing on a dietary pattern of primarily whole, plant-based foods while minimizing ultra-processed foods. Pediatricians play a vital role in their efforts to minimize fear-based messaging and support families through shared decision-making. Pediatrician awareness of GMO labeling can guide individualized conversations, particularly that non-GMO labeling does not indicate organic status and that increased cost of some non-GMO foods, especially if also organic, may limit this choice for many families.
Assuntos
Alimentos Geneticamente Modificados , Herbicidas , Criança , Estados Unidos , Humanos , Plantas Geneticamente Modificadas/genética , Glifosato , Produtos Agrícolas/genéticaRESUMO
[This corrects the article DOI: 10.5334/aogh.4056.].
RESUMO
Background: Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals: The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure: This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics: Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle: The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings: Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings: Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings: Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings: The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions: It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations: To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary: This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Assuntos
Doenças Cardiovasculares , Disruptores Endócrinos , Retardadores de Chama , Gases de Efeito Estufa , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Estados Unidos , Criança , Animais , Humanos , Masculino , Feminino , Pré-Escolar , Plásticos/toxicidade , Plásticos/química , Ecossistema , Mônaco , Microplásticos , Poluentes Orgânicos Persistentes , Disruptores Endócrinos/toxicidade , Carvão MineralRESUMO
Healthy soil is foundational to human health. Healthy soil is needed to grow crops, provides food, and sustains populations. It supports diverse ecosystems and critical ecological services such as pollination. It stores water and prevents floods. It captures carbon and slows global climate change. Soil pollution is a great and growing threat to human health. Soil may be polluted by heavy metals, organic chemicals such as pesticides, biological pathogens, and micro/nanoplastic particles. Pollution reduces soil's ability to yield food. It results in food crop contamination and disease. Soil pollutants wash into rivers causing water pollution. Deforestation causes soil erosion, liberates sequestered pollutants, and generates airborne dust. Pollution of air, water, and soil is responsible for at least 9 million deaths each year. More than 60% of pollution-related disease and death is due to cardiovascular disease. Recognizing the importance of pollution to human health, the European Commission and the EU Action Plan for 2050: A Healthy Planet for All, have determined that air, water, and soil pollution must be reduced to levels that cause no harm to human or ecosystem health. We are thus required to create a toxic-free environment, respect the concept of a safe operating space for humanity, and sustain the health of our planet for future generations. This review article summarizes current knowledge of the links between soil health and human health and discusses the more important soil pollutants and their health effects.