Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Geod ; 94(6): 57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32587436

RESUMO

The troposphere is considered as one of the major error sources in space geodetic techniques. Thus, accurate troposphere delay models are essential to provide high-quality products, such as reference frames, satellite orbits, or Earth rotation parameters. In this paper, a new troposphere delay model for satellite laser ranging, the Vienna Mapping Functions 3 for optical frequencies (VMF3o), is introduced. The model parameters are derived from ray-traced delays generated by an in-house ray-tracing software. VMF3o comprises not only zenith delays and mapping functions, but also linear horizontal gradients, which are not part of the standard SLR analysis yet. The model parameters are dedicated to a signal wavelength of 532 nm. Since some SLR stations operate also with other wavelengths, VMF3o provides a correction formula to transform the model parameters to any requested wavelength between 350 and 1064 nm. A test demonstrates that the correction formula approximates slant delays calculated at different wavelengths very accurately. The remaining error for slant delays at a wavelength of 1064 nm adds up to only a few millimetres at 10 ∘ elevation angle. A comparison study of the modelled delays that are derived from VMF3o and ray-traced delays was carried out to examine the quality of the model approach. The remaining differences of modelled and ray-traced delays are expressed as mean absolute error. At 5 ∘ elevation angle, the mean absolute error is only a few millimetres. At 10 ∘ elevation angle, it is at the 1 mm level. The results of the comparison also reveal that introducing linear horizontal gradients reduces the mean absolute error by more than 80% for low elevation angles.

2.
J Geod ; 92(12): 1387-1399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30930552

RESUMO

Missing or incorrect consideration of azimuthal asymmetry of troposphere delays is a considerable error source in space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). So-called horizontal troposphere gradients are generally utilized for modeling such azimuthal variations and are particularly required for observations at low elevation angles. Apart from estimating the gradients within the data analysis, which has become common practice in space geodetic techniques, there is also the possibility to determine the gradients beforehand from different data sources than the actual observations. Using ray-tracing through Numerical Weather Models (NWMs), we determined discrete gradient values referred to as GRAD for VLBI observations, based on the standard gradient model by Chen and Herring (J Geophys Res 102(B9):20489-20502, 1997. 10.1029/97JB01739) and also for new, higher-order gradient models. These gradients are produced on the same data basis as the Vienna Mapping Functions 3 (VMF3) (Landskron and Böhm in J Geod, 2017. 10.1007/s00190-017-1066-2), so they can also be regarded as the VMF3 gradients as they are fully consistent with each other. From VLBI analyses of the Vienna VLBI and Satellite Software (VieVS), it becomes evident that baseline length repeatabilities (BLRs) are improved on average by 5% when using a priori gradients GRAD instead of estimating the gradients. The reason for this improvement is that the gradient estimation yields poor results for VLBI sessions with a small number of observations, while the GRAD a priori gradients are unaffected from this. We also developed a new empirical gradient model applicable for any time and location on Earth, which is included in the Global Pressure and Temperature 3 (GPT3) model. Although being able to describe only the systematic component of azimuthal asymmetry and no short-term variations at all, even these empirical a priori gradients slightly reduce (improve) the BLRs with respect to the estimation of gradients. In general, this paper addresses that a priori horizontal gradients are actually more important for VLBI analysis than previously assumed, as particularly the discrete model GRAD as well as the empirical model GPT3 are indeed able to refine and improve the results.

3.
J Geod ; 92(4): 349-360, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31258259

RESUMO

Incorrect modeling of troposphere delays is one of the major error sources for space geodetic techniques such as Global Navigation Satellite Systems (GNSS) or Very Long Baseline Interferometry (VLBI). Over the years, many approaches have been devised which aim at mapping the delay of radio waves from zenith direction down to the observed elevation angle, so-called mapping functions. This paper contains a new approach intended to refine the currently most important discrete mapping function, the Vienna Mapping Functions 1 (VMF1), which is successively referred to as Vienna Mapping Functions 3 (VMF3). It is designed in such a way as to eliminate shortcomings in the empirical coefficients b and c and in the tuning for the specific elevation angle of 3 ∘ . Ray-traced delays of the ray-tracer RADIATE serve as the basis for the calculation of new mapping function coefficients. Comparisons of modeled slant delays demonstrate the ability of VMF3 to approximate the underlying ray-traced delays more accurately than VMF1 does, in particular at low elevation angles. In other words, when requiring highest precision, VMF3 is to be preferable to VMF1. Aside from revising the discrete form of mapping functions, we also present a new empirical model named Global Pressure and Temperature 3 (GPT3) on a 5 ∘ × 5 ∘ as well as a 1 ∘ × 1 ∘ global grid, which is generally based on the same data. Its main components are hydrostatic and wet empirical mapping function coefficients derived from special averaging techniques of the respective (discrete) VMF3 data. In addition, GPT3 also contains a set of meteorological quantities which are adopted as they stand from their predecessor, Global Pressure and Temperature 2 wet. Thus, GPT3 represents a very comprehensive troposphere model which can be used for a series of geodetic as well as meteorological and climatological purposes and is fully consistent with VMF3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA