Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Pharm ; 653: 123886, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38331330

RESUMO

Dandruff, or pityriasis capitis simplex, is a common scalp condition associated with excessive flaking and scaling of the epidermal tissue. Other features include irregular corneocyte turnover, irritation, itching and an impaired skin barrier function. Previously we reported the characterization of climbazole (CBZ), an antifungal agent used in the management of dandruff. Skin permeation of CBZ from neat solvents was also investigated. In the present work we evaluated CBZ permeation in human skin in vitro from more complex formulations that better represent products used by consumers. The various systems studied were composed of propylene glycol (PG), Transcutol®P (TC), octyl salicylate (OSal) and isopropyl alcohol (IPA). As well as measurement of skin uptake and penetration of CBZ, where possible, the skin retention and permeation of the various solvents was also determined. All vehicles promoted skin permeation of CBZ but no significant differences in amount permeated were evident between the binary vehicles (PG:TC, TC:OSal) and the ternary vehicle studied (PG:IPA:OSal). The binary vehicles generally promoted more skin uptake of CBZ compared with the neat solvents (PG, TC, OSal) studied previously. Permeation and skin extraction of CBZ from the PG:TC vehicles increased with increasing PG content; a similar trend was evident for the PG:IPA:OSal systems. New methods were developed and validated for measurement of PG, TC and OSal. Analysis of the individual solvents indicated that PG permeation was also independent of the amounts of other solvents in the binary or ternary systems. Consistent with previous findings higher proportions of TC permeated compared with PG for the PG:TC binary systems; TC also permeated the skin more rapidly than PG from these vehicles. For OSal, skin extraction was generally higher for TC:OSal compared with the PG:IPA:OSal vehicle. However, increasing the content of OSal did not appear to influence CBZ skin uptake nor permeation. Interestingly, the effects of the various PG:TC vehicles on CBZ skin delivery contrast with results we previous reported for the same systems for a different active. This confirms that with reference to skin permeation, formulation effects and/or skin penetration enhancement should be expected to vary and may not be predicted for specific vehicles.


Assuntos
Caspa , Imidazóis , Humanos , Administração Cutânea , Pele , Solventes , Propilenoglicol , 2-Propanol , Permeabilidade
2.
J Eur Acad Dermatol Venereol ; 38(5): 812-820, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38140732

RESUMO

The stratum corneum (SC)-the outermost layer of the epidermis-is the principal permeability and protective barrier of the skin. Different components of the SC, including corneocytes, natural moisturizing factor, a variety of enzymes and their inhibitors, antimicrobial peptides and lipids, work interactively to maintain barrier function. The main barrier properties of the SC are the limitation of water loss and the prevention of infection and contact with potentially harmful exogenous factors. Although the SC functions consistently as a protective barrier throughout the body, variations in functions and morphology occur across body sites with age and skin type. Healthy SC function also depends on the interplay between the chemosensory barrier, the skin's microbiome and the innate immune system. Dysregulation of SC barrier function can lead to the development of skin disorders, such as dry, flaky or sensitive skin, but the complete underlying pathophysiology of these are not fully understood. This review provides insight into the current literature and emerging themes related to epidermal barrier changes that occur in the context of dry, flaky and sensitive skin. Additional studies are needed to further elucidate the underlying aetiology of dry, flaky and sensitive skin and to provide tailored treatment.


Assuntos
Epiderme , Humanos , Epiderme/fisiologia , Dermatopatias/fisiopatologia , Permeabilidade
3.
Int J Cosmet Sci ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38083900

RESUMO

OBJECTIVE: Disruption of the protective stratum corneum barrier increases the skin's vulnerability to microorganisms and facilitates conditions such as dandruff. Dandruff is a disorder of the scalp that causes increased scaling of the SC and is associated with Malassezia fungus. Consequently, many anti-dandruff commercial products use anti-fungal active ingredients such as piroctone olamine also known as Octopirox (OPX). OPX is an active ingredient used in a number of topical preparations for the management of dandruff. The characterization of the physicochemical properties of OPX was previously reported. The aim of the present work was to investigate a range of solvent systems for their effects on OPX interaction with human skin. METHODS: The solvents used in this study were propylene glycol (PG), diethylene glycol monoethyl ether or Transcutol® (TC), PG monolaurate (PGML), isopropyl myristate (IPM), caprylic/capric triglyceride or Labrafac™ Lipophile WL 1349 (LAB), PG caprylate or Capryol® 90 (CAP), isostearyl isostearate (ISIS) and Plurol® Oleique CC 497 (PIOI). The single solvent systems evaluated were PG, TC, PGML, IPM, ISIS and CAP. For the binary solvent systems, PG and TC were examined. Ternary solvent systems consisted of: PG, TC and LAB; PG, PGML and LAB; and PG, TC and IPM. The concentration of OPX used was 1% (w/v). Heat-separated human epidermis was used for 24 h permeation experiments performed under finite dose conditions; mass balance studies were also conducted. RESULTS: For the six single solvents examined no permeation was evident. Skin permeation of OPX was observed for binary and ternary solvent systems. The highest permeation for all PG:TC binary solvent system ratios tested was from the PG:TC (75:25) system. For the ternary solvent systems investigated, highest cumulative permeation of OPX was observed for PG:PGML:LAB (60:30:10). Considering all systems, PG:TC (75:25) delivered the greatest amount of OPX through the skin. Although OPX is deposited in the skin following the application of neat solvents, higher skin retention values were generally observed for binary and ternary systems. CONCLUSION: To our knowledge, this is the first study to examine the permeation behaviour of OPX for a range of single, binary and ternary solvent systems.


OBJECTIF: La perturbation de la barrière protectrice de la couche cornée augmente la vulnérabilité de la peau aux micro-organismes et facilite des affections telles que les pellicules. Les pellicules sont un trouble du cuir chevelu qui provoque une augmentation de la desquamation de la couche cornée et qui est associé au champignon Malassezia. Par conséquent, de nombreux produits commerciaux antipelliculaires utilisent des principes actifs antifongiques, tels que la piroctone olamine, également appelée Octopirox (OPX). L'OPX est un principe actif utilisé dans un certain nombre de préparations topiques pour la prise en charge des pellicules. La caractérisation des propriétés physicochimiques de l'OPX a été précédemment rapportée. L'objectif de ce travail était d'étudier un éventail de systèmes de solvants pour leurs effets sur l'interaction de l'OPX avec la peau humaine. MÉTHODES: Les solvants utilisés dans cette étude étaient le propylène glycol (PG), l'éther monoéthylique de diéthylèneglycol ou Transcutol® (TC), le monolaurate de propylène glycol (PGML), le myristate d'isopropyle (IPM), le triglycéride caprylique/caprique ou Labrafac™ lipophile WL 1349 (LAB), le caprylate de propylène glycol ou Capryol® 90 (CAP), l'isostéarate d'isostéaryle (ISIS) et Plurol® Oleique CC 497 (PIOI). Les systèmes à solvant unique évalués étaient le PG, le TC, le PGML, l'IPM, l'ISIS et le CAP. Pour les systèmes de solvants binaires, le PG et le TC ont été examinés. Les systèmes de solvants ternaires comprenaient : PG, TC et LAB ; PG, PGML et LAB ; et PG, TC et IPM. La concentration d'OPX utilisée était de 1 % (p/v). L'épiderme humain séparé par la chaleur a été utilisé pour des expériences de perméation de 24 heures réalisées dans des conditions de dose finie ; des études d'équilibre de masse ont également été menées. RÉSULTATS: Pour les six solvants uniques examinés, aucune perméation n'était manifeste. Une perméation cutanée de l'OPX a été observée pour les systèmes de solvants binaires et ternaires. La perméation la plus élevée pour tous les rapports du système de solvant binaire PG:TC testés a été obtenue avec le système PG:TC (75:25). Pour les systèmes de solvants ternaires étudiés, la perméation cumulée la plus élevée d'OPX a été observée pour PG:PGML:LAB (60:30:10). Parmi tous les systèmes, PG:TC (75:25) a délivré la plus grande quantité d'OPX à travers la peau. Bien que l'OPX se dépose dans la peau après l'application de solvants purs, des valeurs de rétention cutanée plus élevées ont généralement été observées pour les systèmes binaire et ternaire. CONCLUSION: À notre connaissance, il s'agit de la première étude visant à examiner le comportement de perméation de l'OPX pour un éventail de systèmes de solvants uniques, binaires et ternaires.

4.
Pharmaceutics ; 15(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37111561

RESUMO

The evaluation of bioequivalence (BE) for topical dermatological drug products is challenging, and there has been significant interest from regulatory authorities in developing new BE methodologies in recent years. Currently, BE is demonstrated by comparative clinical endpoint studies; these are costly and time-consuming and often lack sensitivity and reproducibility. Previously, we reported excellent correlations between in vivo Confocal Raman Spectroscopy in human subjects and in vitro skin permeation testing (IVPT) with the human epidermis for skin delivery of ibuprofen and a number of excipients. The aim of the present proof-of-concept study was to evaluate CRS as a method to assess BE of topical products. Two commercially available formulations, Nurofen Max Strength 10% Gel and Ibuleve Speed Relief Max Strength 10% Gel, were selected for evaluation. Delivery of ibuprofen (IBU) to the skin was determined in vitro and in vivo by IVPT and CRS, respectively. The formulations examined were found to deliver comparable amounts of IBU across the skin over 24 h in vitro (p > 0.05). Additionally, the formulations resulted in similar skin uptake values measured with CRS in vivo, either at 1 h or 2 h after application (p > 0.05). This is the first study to report the capability of CRS for the demonstration of BE of dermal products. Future studies will focus on the standardisation of the CRS methodology for a robust and reproducible pharmacokinetic (PK)-based evaluation of topical BE.

5.
Int J Pharm ; 635: 122692, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36758884

RESUMO

For permeation studies that use excised skin, experimental data may show variability associated with the use of biological tissues. As a consequence, achieving reproducible results and data interpretation may be challenging. The skin parallel artificial membrane permeability assay (skin PAMPA) model has been proposed as a high-throughput tool for predicting skin permeation of chemicals. A number of skin cleansing wipe formulations for the diaper area of infants contain 2-phenoxyethanol (PE) as a preservative and cetylpyridinium chloride (CPC) as a surfactant with antimicrobial activity. However, information regarding cutaneous absorption of PE and CPC in the scientific literatures is remarkably limited. The main aim of the present study was to assess the suitability of the skin PAMPA model for prediction of skin permeation of PE. A secondary aim was to investigate the influence of CPC on the dermal absorption of PE. PE (1 % w/w) was prepared in two vehicles, namely propylene glycol (PG) and water-PG (WP). Permeability of PE was investigated in vitro using the skin PAMPA membrane, porcine skin and human skin under finite dose conditions. The highest permeation of PE was observed for the water-PG preparation with 0.2 % w/w of CPC. This finding was consistently observed in the skin PAMPA model and in Franz cell studies using porcine skin and human skin. Permeation of CPC was not detected in the three permeation models. However, permeation of PE increased significantly (p < 0.05) in the presence of CPC compared with formulations without CPC. When comparing the skin PAMPA data and the mammalian skin data for the cumulative amount of PE permeated, the r2 values for PAMPA-porcine skin and PAMPA-human skin were 0.84 and 0.89, respectively. The findings in this study demonstrate the capability of the skin PAMPA model to differentiate between various doses and formulations and are encouraging for further applications of this model as a high throughput screening tool in topical formulation development.


Assuntos
Membranas Artificiais , Absorção Cutânea , Suínos , Animais , Humanos , Administração Cutânea , Pele/metabolismo , Propilenoglicol/metabolismo , Permeabilidade , Água/metabolismo , Mamíferos
6.
Int J Cosmet Sci ; 45(3): 345-353, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36752028

RESUMO

OBJECTIVE: Dandruff and its more severe related condition, seborrheic dermatitis affects a high proportion of the population at some point in their life. Piroctone olamine, also known as Octopirox® (OPX) is the monoethanolamine salt of piroctone and is an antifungal agent widely used for the management of dandruff. The aim of the present work was to characterize the physicochemical properties of piroctone olamine and to conduct pre-formulation studies for the development of novel topical formulations of this active. METHODS: An HPLC method was developed and validated for the analysis of OPX. The melting point was determined using the DSC Q2000 (TA Instruments, USA). The distribution coefficient (logD(O/PBS) ) and partition coefficient (log Po/w ) was determined in phosphate-buffered saline (PBS) AND deionized (DI) water using the shake flask method. All experiments were performed at room temperature. The solubility was determined experimentally by adding amount of active to a solvent. The samples were kept at 32° ± 1°C for 48 h in a water bath. The stability of the compound was determined in a range of solvents by preparing solutions of 1 mg mL-1 in the relevant solvents. These solutions were kept and stirred throughout the experiment at 32 ± 1°C, and aliquots were taken at 24, 48 and 96 h. RESULTS: The HPLC method was developed successfully; however, samples at the lower end of the calibration curve showed lower degrees of precision and accuracy. Based on experiments with DSC, the melting point was observed at an onset temperature of 132.4°C. The LogD was determined to be 1.84. The compound had the highest solubility in methanol (278.4 mg mL-1 ) and propylene glycol (PG), with a value of 248.8 mg mL-1 . The lowest solubility for OPX was in dimethyl isosorbide (9.9 mg mL-1 ), Labrafac™ (3.6 mg mL-1 ) and isostearyl isostearate (0.5 mg mL-1 ). Over the 4 days, OPX showed stability in ethanol and PG, while a notable decrease in OPX was observed in PBS and DI water at 32 ± 1°C. CONCLUSION: The physicochemical properties of OPX were characterized to find suitable excipients able to target the epidermis for topical delivery. Building on these findings, future work will focus on the development of novel topical formulation of OPX.


OBJECTIF: la production de pellicules et la maladie plus grave qui y est apparentée, la dermatite séborrhéique, touchent une grande partie des personnes à un moment donné de leur vie. La piroctone olamine, également connue sous le nom d'Octopirox® (OPX), est le sel de monoéthanolamine de la piroctone. Il s'agit d'un agent antifongique largement utilisé pour le traitement des pellicules. L'objectif de ce travail était de caractériser les propriétés physicochimiques de la piroctone olamine et de mener des études de préformulation pour le développement de nouvelles formulations topiques de ce principe actif. MÉTHODES: une méthode de chromatographie liquide à haute performance (CLHP) a été développée et validée pour l'analyse de l'OPX. Le point de fusion a été déterminé à l'aide du calorimètre à balayage différentiel (Differential Scanning Calorimetry, DSC) Q2000 (TA Instruments, États-Unis). Le coefficient de distribution (logD(Octanol/PBS) ) et le coefficient de partage (log Poctanol/eau , ou log Poe ) ont été déterminés dans le tampon phosphate salin (phosphate buffered saline, PBS) et dans l'eau désionisée (deionised, DI) à l'aide de la méthode par agitation en flacon. Toutes les expériences ont été réalisées à température ambiante. La solubilité a été déterminée de manière expérimentale. Une certaine quantité du principe actif a été ajoutée au solvant. Les échantillons ont été conservés à une température de 32 °C ± 1 °C pendant 48 h dans un bain-marie. La stabilité du composé a été déterminée à l'aide d'une gamme de solvants. Des solutions de 1 mg mL−1 ont été préparées dans les solvants correspondants. Les solutions ont été conservées et agitées tout au long de l'expérience à une température de 32°C ± 1°C. Des aliquotes ont été prélevées après 24, 48 et 96 h. RÉSULTATS: la méthode CLHP a été développée avec succès. Toutefois, les échantillons situés dans la partie inférieure de la courbe d'étalonnage ont montré des degrés inférieurs de précision et d'exactitude. Sur la base des expériences avec le DSC, le point de fusion a été observé à une température initiale de 132,4°C. Le LogD a été déterminé à 1,84. Le composé présentait la solubilité la plus élevée dans le méthanol (278,4 mg mL−1 ) et le propylène glycol (PG), avec une valeur de 248,8 mg mL−1 . L'OPX présentait la solubilité la plus faible dans l'isosorbide de diméthyle (9,9 mg.mL−1 ), le LabrafacTM (3,6 mg mL−1 ) et l'isostéarate d'isostéaryle (0,5 mg mL−1 ). Sur les 4 jours, l'OPX a montré une stabilité dans l'éthanol et le PG, tandis qu'il a diminué de manière notable dans le PBS et l'eau désionisée à une température de 32°C ± 1°C. CONCLUSION: les propriétés physicochimiques de l'OPX ont été caractérisées afin de trouver des excipients appropriés capables de cibler l'épiderme dans le cadre d'une administration topique. En s'appuyant sur ces résultats, les travaux futurs se concentreront sur le développement d'une nouvelle formulation topique de l'OPX.


Assuntos
Caspa , Etanolaminas , Piridonas , Humanos , Caspa/tratamento farmacológico , Antifúngicos/uso terapêutico , Etanolaminas/uso terapêutico , Combinação de Medicamentos , Piridonas/uso terapêutico , Solubilidade , Estabilidade de Medicamentos
7.
Pharmaceutics ; 14(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36297542

RESUMO

Previously, we reported the use of confocal Raman spectroscopy (CRS) as a novel non-invasive approach to determine drug disposition in the skin in vivo. Results obtained by CRS were found to correlate with data from the well-established in vitro permeation test (IVPT) model using human epidermis. However, these studies used simple vehicles comprising single solvents and binary or ternary solvent mixtures; to date, the utility of CRS for monitoring dermal absorption following application of complex marketed formulations has not been examined. In the present work, skin delivery of diclofenac sodium (DFNa) from two topical dermatological drug products, namely Diclac® Lipogel 10 mg/g and Primofenac® Emulsion gel 1%, was determined by IVPT and in vivo by both CRS and tape stripping (TS) methodologies under similar experimental conditions. The in vivo data were evaluated against the in vitro findings, and a direct comparison between CRS and TS was performed. Results from all methodologies showed that Diclac promoted significantly greater DFNa delivery to the skin (p < 0.05). The cumulative amounts of DFNa which permeated at 24 h in vitro for Diclac (86.5 ± 9.4 µg/cm2) were 3.6-fold greater than the corresponding amounts found for Primofenac (24.4 ± 2.7 µg/cm2). Additionally, total skin uptake of DFNa in vivo, estimated by the area under the depth profiles curves (AUC), or the signal intensity of the drug detected in the upper stratum corneum (SC) (4 µm) ranged from 3.5 to 3.6-fold greater for Diclac than for Primofenac. The shape of the distribution profiles and the depth of DFNa penetration to the SC estimated by CRS and TS were similar for the two methods. However, TS data indicated a 4.7-fold greater efficacy of Diclac relative to Primofenac, with corresponding total amounts of drug penetrated, 94.1 ± 22.6 µg and 20.2 ± 7.0 µg. The findings demonstrate that CRS is a methodology that is capable of distinguishing skin delivery of DFNa from different formulations. The results support the use of this approach for non-invasive evaluation of topical products in vivo. Future studies will examine additional formulations with more complex compositions and will use a wider range of drugs with different physicochemical properties. The non-invasive nature of CRS coupled with the ability to monitor drug permeation in real time offer significant advantages for testing and development of topical dermatological products.

8.
Int J Pharm ; 623: 121906, 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35716976

RESUMO

Ion pairing is a potential strategy used to increase the partition and permeation of ionisable drug molecules. This work outlines the process of identifying, selecting and testing potential counter ions for diclofenac (DF). Three screening criteria were considered in the initial selection process. The first, toxicity, was used to eliminate counter ion candidates that could not be used in topical formulations. The second related to the balancing of charges. As DF is a free acid in its unionised state, counter ions should be of a basic character. Finally, molecular size, as represented by molecular mass (Da), was used. Because of the impact on ion pair formation, the counter ion was required to have a lower molecular weight than diclofenac. Basic amino acids L-Arginine, L-Histidine, L-Lysine and their salts were chosen. The selection process concluded with Partition Coefficient (PC) studies. These were used to identify any counter ions able to interact electrostatically with the ionised DF, enabling the 'neutral' ion pair to partition from an aqueous into an organic layer. Permeation studies using porcine skin were performed to test the efficacy of any selected counter ion. These preliminary studies suggest that amino acids may be used as counter ions to increase the partition and permeation of ionisable drugs.


Assuntos
Aminoácidos , Diclofenaco , Ácidos , Administração Cutânea , Aminoácidos/metabolismo , Animais , Íons/química , Pele/metabolismo , Suínos
9.
Int J Pharm ; 622: 121887, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35680112

RESUMO

The purpose of this in vivo exploratory study was to investigate human stratum corneum (SC) lipid conformational order and chain packing in healthy face (cheek) skin as a function of stratum corneum depth using a combination of tape-stripping and horizontal attenuated total reflection Fourier transform infrared (HATR-FTIR) spectroscopy. Equivalent data were also collected from volar forearm skin as we, and others, have previously characterized forearm SC lipid order as a function of depth, therefore these data served as a comparison site and an experimental internal standard for the previously unmeasured in vivo face skin data. An SC depth profile was achieved by using tape strips to sequentially remove "layers" of SC. Trans epidermal water loss (TEWL) measurements were recorded following each sequential tape strip. In vivo HATR-FTIR spectra were collected after each tape strip, providing a depth profile of spectral data through the SC of both faces and arms. Spectral data were analyzed at five discrete SC depths corresponding to baseline and SC depths at which the increase in TEWL was 25, 50, 75, and 100 percent (%) from the baseline measurement. Analysis of the SC in vivo HATR-FTIR spectroscopic data utilized mean spectra generated by averaging the spectra from all panelists (n = 10) at the five specific SC depths corresponding to when TEWL had increased by 25, 50, 75 and 100 % from baseline for each subject, respectively. While this is an exploratory study, and the data could be collated and processed in many ways, the average spectral data reveal clear trends in the face and arm SC. Increasing SC lipid order with depth is observed for face skin, as with arm skin, albeit with significant differences at all relative depths in the absolute lipid order between faces and arms. In vivo SC lipids are significantly more ordered at all depths in arms versus cheeks. The less ordered SC lipids of face skin can be in part attributed to the presence of a high amount of fluid sebaceous lipid species observed deep into the face SC. Interestingly, no evidence of orthorhombic packing is observed at any depth in face SC. This is consistent with the high degree of disorder indicated from the chain fluidity measurements. These in vivo HATR-FTIR depth studies of face skin highlight how different SC barrier organization is in the face compared to the more widely studied body sites such as arms and legs. Further studies of the SC lipid barrier in faces are needed to understand the significant differences in lipid organization and its implication for the penetration of drug and cosmetic actives through face skin.


Assuntos
Braço , Epiderme , Face , Humanos , Lipídeos , Espectroscopia de Infravermelho com Transformada de Fourier
10.
Pharmaceutics ; 14(2)2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35214165

RESUMO

A good understanding of infant skin should provide a rationale for optimum management of the health of this integument. In this review, we discuss the skin barrier function of infants, particularly with reference to the use of diapers and baby wipes. The skin barrier of newborns continues to develop with age. Two years after birth, the barrier properties of infant skin closely resemble those of adult skin. However, several risk factors may contribute to impaired skin barrier and altered skin permeability in infants. Problems may arise from the use of diapers and baby wipes. The skin covered by a diaper is effectively an occluded environment, and thus is vulnerable to over-hydration. To date there has been no published information regarding dermal absorption of ingredients contained in baby wipes. Similarly, dermal absorption of topical ingredients in infants with underlying skin conditions has not been widely explored. Clearly, there are serious ethical concerns related to conducting skin permeation studies on infant skin. However, the increasing availability of non-invasive methods for in vivo studies is encouraging and offers new directions for studying this important patient group.

11.
BMJ ; 376: e066102, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165089
12.
Int J Pharm ; 614: 121447, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34998922

RESUMO

For effective topical and transdermal drug delivery, it is necessary for most actives to penetrate and permeate through the stratum corneum (SC). Extensive investigation of the thermal behaviour of mammalian SC has been performed to understand the barrier function of the skin. However, little attention has been paid to the related experimental variables in thermal analysis of the SC using differential scanning calorimetry that may influence the results obtained from such studies. In this review, we provide a comprehensive overview of the thermal transitions of the SC of both porcine and human skin. More importantly, the selection and impact of the experimental and instrumental parameters used in thermal analysis of the SC are critically evaluated. New opportunities for the use of thermal analysis of mammalian SC in advancing skin research, particularly for elucidation of the actions of excipients employed in topical and transdermal formulations on the skin are also highlighted.


Assuntos
Epiderme , Pele , Animais , Varredura Diferencial de Calorimetria , Excipientes/metabolismo , Humanos , Pele/metabolismo , Absorção Cutânea , Suínos
13.
Drug Deliv Transl Res ; 12(4): 805-815, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33886076

RESUMO

Amitriptyline, administered orally, is currently one of the treatment options for the management of neuropathic pain and migraine. Because of the physicochemical properties of the molecule, amitriptyline is also a promising candidate for delivery as a topical analgesic. Here we report the dermal delivery of amitriptyline from a range of simple formulations. The first stage of the work required the conversion of amitriptyline hydrochloride to the free base form as confirmed by nuclear magnetic resonance (NMR). Distribution coefficient values were measured at pH 6, 6.5, 7, and 7.4. Solubility and stability of amitriptyline were assessed prior to conducting in vitro permeation and mass balance studies. The compound demonstrated instability in phosphate-buffered saline (PBS) dependent on pH. Volatile formulations comprising of isopropyl alcohol (IPA) and isopropyl myristate (IPM) or propylene glycol (PG) were evaluated in porcine skin under finite dose conditions. Compared with neat IPM, the IPM:IPA vehicles promoted 8-fold and 5-fold increases in the amount of amitriptyline that permeated at 24 h. Formulations containing PG also appear to be promising vehicles for dermal delivery of amitriptyline, typically delivering higher amounts of amitriptyline than the IPM:IPA vehicles. The results reported here suggest that further optimization of topical amitriptyline formulations should be pursued towards development of a product for clinical investigational studies.


Assuntos
Analgesia , Absorção Cutânea , Administração Cutânea , Amitriptilina/metabolismo , Analgésicos , Animais , Excipientes , Propilenoglicol/química , Pele/metabolismo , Suínos
14.
Adv Drug Deliv Rev ; 180: 114077, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896130

RESUMO

The production of drug delivery systems fabricated at the nano scale comes with the challenges of identifying reliable characterisation tools, especially for solid dosage forms. A full understanding of physicochemical properties of solid-state systems at a high spatial resolution is essential to monitor their manufacturability, processability, performance (dissolution) and stability. Nano-thermal analysis (nano-TA), a hybrid of atomic force microscopy (AFM) and thermal analysis, has emerged as a solution to address the need for complete characterisation of samples with surface heterogeneity. Nano-TA provides not only physical information using conventional AFM but also the thermal behaviour of these systems as an additional chemical dimension. In this review, the principles and techniques of nano-TA are discussed with emphasis on recent pharmaceutical applications. Building on nano-TA, the combination of this approach with infrared spectroscopic analysis is briefly introduced. The challenges and considerations for future development of nano-TA characterisation are also outlined.


Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Microscopia de Força Atômica/métodos , Humanos , Nanoestruturas , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Temperatura
17.
Pharmaceutics ; 13(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34202939

RESUMO

Ion pairing is a strategy used to increase the permeation of topically applied ionised drugs. Formation occurs when the electrostatic energy of attraction between oppositely charged ions exceeds their mean thermal energy, making it possible for them to draw together and attain a critical distance. These ions then behave as a neutral species, allowing them to partition more readily into a lipid environment. Partition coefficient studies may be used to determine the potential of ions to pair and partition into an organic phase but cannot be relied upon to predict flux. Early researchers indicated that temperature, size of ions and dielectric constant of the solvent system all contributed to the formation of ion pairs. While size is important, this may be outweighed by improved lipophilicity of the counter ion due to increased length of the carbon chain. Organic counter ions are more effective than inorganic moieties in forming ion pairs. In addition to being used to increase permeation, ion pairs have been used to control and even prevent permeation of the active ingredient. They have also been used to stabilise solid lipid nanoparticle formulations. Ion pairs have been used in conjunction with permeation enhancers, and permeation enhancers have been used as counter ions in ion pairing. This review attempts to show the various ways in which ion pairs have been used in drug delivery via the skin. It also endeavours to extract and consolidate common approaches in order to inform future formulations for topical and transdermal delivery.

18.
Pharmaceutics ; 13(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34069268

RESUMO

In vivo human studies are considered to be the "gold standard" when investigating (trans)dermal delivery of actives. Previously, we reported the effects of a range of vehicles on the delivery of niacinamide (NIA) using conventional Franz cell studies. In the present work, dermal delivery of NIA was investigated in vivo in human subjects using confocal Raman spectroscopy (CRS) and tape stripping (TS). The vehicles investigated included propylene glycol (PG), Transcutol® P (TC), binary combinations of PG with oleic acid (OA) or linolenic acid (LA) and a ternary system comprising of TC, caprylic/capric triglyceride (CCT) and dimethyl isosorbide (DMI). For the CRS studies, higher area under curve (AUC) values for NIA were observed for the PG:LA binary system compared with PG, TC and TC:CCT:DMI (p < 0.05). A very good correlation was found between the in vitro cumulative permeation of NIA and the AUC values from Raman intensity depth profiles, with a Pearson correlation coefficient (R2) of 0.84. In addition, an excellent correlation (R2 = 0.97) was evident for the signal of the solvent PG and the active. CRS was also shown to discriminate between NIA in solution versus crystalline NIA. The findings confirm that CRS is emerging as a powerful approach for dermatopharmacokinetic studies of both actives and excipients in human.

19.
Pharmaceutics ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924434

RESUMO

The composition of topical and transdermal formulations is known to determine the rate and the extent of drug delivery to and through the skin. However, to date, the role of excipients in these formulations on skin delivery of actives has received little attention from scientists in the field. Monitoring skin absorption of both drug and vehicle may provide insights into the mechanism by which excipients promote permeation and may facilitate the design of effective and safer products. Previously, we have investigated the use of quantitative Confocal Raman Spectroscopy (CRS) to investigate the delivery of an active to the skin, and we also reported the first fully quantitative study that compared this method with the well-established in vitro permeation test (IVPT) model. To further explore the potential of quantitative CRS in assessing topical delivery, the present work investigated the effects of commonly used excipients on the percutaneous absorption of a model drug, ibuprofen (IBU). Permeation of IBU and selected solvents following finite dose applications to human skin was determined in vitro and in vivo by Franz diffusion studies and quantitative CRS, respectively. The solvents used were propylene glycol (PG), dipropylene glycol (DPG), tripropylene glycol (TPG), and polyethylene glycol 300 (PEG 300). Overall, the cumulative amounts of IBU that permeated at 24 h in vitro were similar for PG, DPG, and TPG (p > 0.05). These three vehicles outperformed PEG 300 (p < 0.05) in terms of drug delivery. Concerning the vehicles, the rank order for in vitro skin permeation was DPG ≥ PG > TPG, while PEG 300 did not permeate the skin. A linear relationship between maximum vehicle and IBU flux in vitro was found, with a correlation coefficient (R2) of 0.95. When comparing in vitro with in vivo data, a positive in vitro-in vivo (IVIV) correlation between the cumulative permeation of IBU in vitro and the total amount of IBU that penetrated the stratum corneum (SC) in vivo was observed, with a Pearson correlation coefficient (R2) of 0.90. A strong IVIV correlation, R2 = 0.82, was found following the linear regression of the cumulative number of solvents permeated in vitro and the corresponding skin uptake in vivo measured with CRS. This is the first study to correlate in vivo permeation of solvents measured by CRS with data obtained by in vitro diffusion studies. The IVIV correlations suggest that CRS is a powerful tool for profiling drug and vehicle delivery from dermal formulations. Future studies will examine additional excipients with varying physicochemical properties. Ultimately, these findings are expected to lead to new approaches for the design, evaluation, and optimization of formulations that target actives to and through the skin.

20.
Micron ; 145: 103045, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33689970

RESUMO

Drug crystallisation in the skin is recognised as a significant problem in topical and transdermal drug delivery. Our recent investigations provided new evidence of drug crystallisation in the skin, however, confirming the precise location of crystals remains challenging. Of note, most approaches used have required disruption of the membrane by tape stripping, with crystal detection limited to the superficial skin layers. Hence, a non-destructive method for complete spatial resolution of crystallised drug in skin is still lacking. In this communication, we report the application of X-ray micro-computed tomography (microCT) to examine drug crystallisation in mammalian skin ex vivo. Permeation studies of a saturated solution of diclofenac sodium were conducted in porcine skin; subsequently, tissue samples were scanned using microCT to generate 2D and 3D maps. A layer of drug crystals was observed on the skin surface; microCT maps also confirmed the distribution of drug crystals up to a skin depth of 0.2 - 0.3 mm. MicroCT also allowed the identification of drug crystallisation as a distinct and confirmed event in the skin and as an extension from drug crystals formed on the skin. These preliminary results confirm the potential of microCT to study this important phenomenon in topical and transdermal drug delivery.


Assuntos
Preparações Farmacêuticas , Administração Cutânea , Animais , Diclofenaco , Pele , Suínos , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA