Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38337942

RESUMO

Our recent investigations indicated that isoforms of ferredoxin (Fd) and ferredoxin NADP+ reductase (FNR) play essential roles for the reductive steps of the 2C-methyl-D-erythritol 4-phosphate (MEP) pathway of terpenoid biosynthesis in peppermint glandular trichomes (GTs). Based on an analysis of several transcriptome data sets, we demonstrated the presence of transcripts for a leaf-type FNR (L-FNR), a leaf-type Fd (Fd I), a root-type FNR (R-FNR), and two root-type Fds (Fd II and Fd III) in several members of the mint family (Lamiaceae). The present study reports on the biochemical characterization of all Fd and FNR isoforms of peppermint (Mentha × piperita L.). The redox potentials of Fd and FNR isoforms were determined using photoreduction methods. Based on a diaphorase assay, peppermint R-FNR had a substantially higher specificity constant (kcat/Km) for NADPH than L-FNR. Similar results were obtained with ferricyanide as an electron acceptor. When assayed for NADPH-cytochrome c reductase activity, the specificity constant with the Fd II and Fd III isoforms (when compared to Fd I) was slightly higher for L-FNR and substantially higher for R-FNR. Based on real-time quantitative PCR assays with samples representing various peppermint organs and cell types, the Fd II gene was expressed very highly in metabolically active GTs (but also present at lower levels in roots), whereas Fd III was expressed at low levels in both roots and GTs. Our data provide evidence that high transcript levels of Fd II, and not differences in the biochemical properties of the encoded enzyme when compared to those of Fd III, are likely to support the formation of copious amounts of monoterpene via the MEP pathway in peppermint GTs. This work has laid the foundation for follow-up studies to further investigate the roles of a unique R-FNR-Fd II pair in non-photosynthetic GTs of the Lamiaceae.

2.
Front Plant Sci ; 14: 1125065, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123862

RESUMO

Above-ground material of members of the mint family is commercially distilled to extract essential oils, which are then formulated into a myriad of consumer products. Most of the research aimed at characterizing the processes involved in the formation of terpenoid oil constituents has focused on leaves. We now demonstrate, by investigating three mint species, peppermint (Mentha Ë£ piperita L.), spearmint (Mentha spicata L.) and horsemint (Mentha longifolia (L.) Huds.; accessions CMEN 585 and CMEN 584), that other organs - namely stems, rhizomes and roots - also emit volatiles and that the terpenoid volatile composition of these organs can vary substantially from that of leaves, supporting the notion that substantial, currently underappreciated, chemical diversity exists. Differences in volatile quantities released by plants whose roots had been dipped in a Verticillium dahliae-spore suspension (experimental) or dipped in water (controls) were evident: increases of some volatiles in the root headspace of mint species that are susceptible to Verticillium wilt disease (peppermint and M. longifolia CMEN 584) were detected, while the quantities of certain volatiles decreased in rhizomes of species that show resistance to the disease (spearmint and M. longifolia CMEN 585). To address the genetic and biochemical basis underlying chemical diversity, we took advantage of the newly sequenced M. longifolia CMEN 585 genome to identify candidate genes putatively coding for monoterpene synthases (MTSs), the enzymes that catalyze the first committed step in the biosynthesis of monoterpenoid volatiles. The functions of these genes were established by heterologous expression in Escherichia coli, purification of the corresponding recombinant proteins, and enzyme assays, thereby establishing the existence of MTSs with activities to convert a common substrate, geranyl diphosphate, to (+)-α-terpineol, 1,8-cineole, γ-terpinene, and (-)-bornyl diphosphate, but were not active with other potential substrates. In conjunction with previously described MTSs that catalyze the formation of (-)-ß-pinene and (-)-limonene, the product profiles of the MTSs identified here can explain the generation of all major monoterpene skeletons represented in the volatiles released by different mint organs.

3.
Methods Enzymol ; 680: 353-380, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710019

RESUMO

The cannabis (Cannabis sativa L.) genome is highly heterozygous and, to retain genetic identity, clonal propagation of cultivars is very common. Establishing controlled environments, often involving multiple locations throughout a single grow, is critical for reliably generating materials to be used in research and production. In this article, we break down different periods of the grow cycle, such as cloning, hardening (optional), vegetative growth, flowering growth, and harvest, into individual steps. We are including images and videos for an in-depth coverage of methodological details. We are providing a list of equipment, supplies, reagents, and other resources to help with planning a grow experiment. Finally, we are discussing considerations for different aspects of controlled environments, including lighting, fertilizer regimes, and integrated pest management. With this article, it is our goal to empower researchers to reliably generate disease-free cannabis material suitable for genetic and biochemical studies that require full control of environmental factors.


Assuntos
Cannabis , Cannabis/genética , Ambiente Controlado , Iluminação
4.
Methods Enzymol ; 680: 381-419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710020

RESUMO

Terpenes are the primary determinants of cannabis flower aroma, and ongoing research tests their potential for impacting the overall experience. Frustratingly, despite the importance of terpenes in cannabis physiology and commercial uses, literature reports vary widely regarding the major constituents of volatile blends and the concentrations of individual terpenes. In this article, we provide detailed descriptions of complementary approaches that will allow researchers to determine the identity and quantity of cannabis terpenes unequivocally and reliably. These standard operating procedures will guide decisions about which method to employ to address specific analytical goals. We are including two application examples to illustrate the utility of different approaches for tackling the analysis of terpenes in cannabis flower samples.


Assuntos
Cannabis , Terpenos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Agonistas de Receptores de Canabinoides
5.
J Food Sci ; 87(12): 5402-5417, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36357987

RESUMO

This study examined the influence of pectinase-producing non-Saccharomyces yeasts on the chemical and sensory attributes of red and white wines with added pectin. Merlot and Chardonnay wines were produced with or without a mixture of pectinase-producing non-Saccharomyces yeasts (Cryptococcus adeliensis, Issatchenkia orientalis, and Pichia kluyveri) added to the must prior to alcoholic fermentation conducted by a commercial strain of Saccharomyces cerevisiae. To ensure sufficient substrate was present, varying concentrations of apple pectin (up to 1.25 g/L for red wines and 1.00 g/L for white wine) were added at the start of fermentation. After bottling, trained panelists (n = 10) analyzed these wines for aroma, flavor, taste, and mouthfeel attributes. For both wines, significant interactions were noted between the presence of non-Saccharomyces yeasts and pectin addition which affected pH, titratable acidity, and concentrations of D-galacturonic acid. While no significant sensory differences were observed among the red wines, limited changes were noted for white wines. However, a strong positive correlation was found between the D-galacturonic acid and buttery aroma for Chardonnay and with flavor for Merlot. Increasing D-galacturonic acid concentrations, through utilization of non-Saccharomyces yeasts, may improve the wine quality as a buttery aroma is often associated with high-quality Chardonnay. For both red and white wines, the utilization of these particular non-Saccharomyces yeasts significantly influenced chemical properties but yielded minor sensory changes without any faults. PRACTICAL APPLICATION: With the recent trend to reduce alcohol content in commercial wines, the interest in non-Saccharomyces yeasts has grown. This study showed that the addition of non-Saccharomyces yeasts, perhaps due to their pectinase activity, influenced the chemical characteristics of red and white wines with limited sensory differences, making these yeasts a useful tool for winemakers to modify wine properties.


Assuntos
Vitis , Vinho , Vinho/análise , Poligalacturonase , Etanol/análise , Leveduras , Fermentação , Saccharomyces cerevisiae , Pectinas
6.
Proc Natl Acad Sci U S A ; 119(36): e2207190119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36037354

RESUMO

Mercaptoethane sulfonate or coenzyme M (CoM) is the smallest known organic cofactor and is most commonly associated with the methane-forming step in all methanogenic archaea but is also associated with the anaerobic oxidation of methane to CO2 in anaerobic methanotrophic archaea and the oxidation of short-chain alkanes in Syntrophoarchaeum species. It has also been found in a small number of bacteria capable of the metabolism of small organics. Although many of the steps for CoM biosynthesis in methanogenic archaea have been elucidated, a complete pathway for the biosynthesis of CoM in archaea or bacteria has not been reported. Here, we present the complete CoM biosynthesis pathway in bacteria, revealing distinct chemical steps relative to CoM biosynthesis in methanogenic archaea. The existence of different pathways represents a profound instance of convergent evolution. The five-step pathway involves the addition of sulfite, the elimination of phosphate, decarboxylation, thiolation, and the reduction to affect the sequential conversion of phosphoenolpyruvate to CoM. The salient features of the pathway demonstrate reactivities for members of large aspartase/fumarase and pyridoxal 5'-phosphate-dependent enzyme families.


Assuntos
Bactérias , Coenzimas , Euryarchaeota , Mesna , Anaerobiose , Archaea/metabolismo , Bactérias/metabolismo , Coenzimas/biossíntese , Euryarchaeota/metabolismo , Mesna/metabolismo , Metano/metabolismo , Oxirredução , Fosfatos/metabolismo
7.
G3 (Bethesda) ; 12(8)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35551385

RESUMO

Mentha longifolia (L.) Huds., a wild, diploid mint species, has been developed as a model for mint genetic and genomic research to aid breeding efforts that target Verticillium wilt disease resistance and essential oil monoterpene composition. Here, we present a near-complete, chromosome-scale mint genome assembly for M. longifolia USDA accession CMEN 585. This new assembly is an update of a previously published genome draft, with dramatic improvements. A total of 42,107 protein-coding genes were annotated and placed on 12 chromosomal scaffolds. One hundred fifty-three genes contained conserved sequence domains consistent with nucleotide binding site-leucine-rich-repeat plant disease resistance genes. Homologs of genes implicated in Verticillium wilt resistance in other plant species were also identified. Multiple paralogs of genes putatively involved in p-menthane monoterpenoid biosynthesis were identified and several cases of gene clustering documented. Heterologous expression of candidate genes, purification of recombinant target proteins, and subsequent enzyme assays allowed us to identify the genes underlying the pathway that leads to the most abundant monoterpenoid volatiles. The bioinformatic and functional analyses presented here are laying the groundwork for using marker-assisted selection in improving disease resistance and essential oil traits in mints.


Assuntos
Mentha , Óleos Voláteis , Verticillium , Cromossomos , Resistência à Doença/genética , Mentha/química , Mentha/genética , Mentha/metabolismo , Monoterpenos/análise , Monoterpenos/metabolismo , Óleos Voláteis/metabolismo , Melhoramento Vegetal , Verticillium/genética
8.
Plant Sci ; 314: 111119, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34895548

RESUMO

Peppermint (Mentha x piperita L.) and Japanese catnip (Schizonepeta tenuifolia (Benth.) Briq.) accumulate p-menthane monoterpenoids with identical functionalization patterns but opposite stereochemistry. In the present study, we investigate the enantioselectivity of multiple enzymes involved in monoterpenoid biosynthesis in these species. Based on kinetic assays, mint limonene synthase, limonene 3-hydroxylase, isopiperitenol dehydrogenase, isopiperitenone reductase, and menthone reductase exhibited significant enantioselectivity toward intermediates of the pathway that proceeds through (-)-4S-limonene. Limonene synthase, isopiperitenol dehydrogenase and isopiperitenone reductase of Japanese catnip preferred intermediates of the pathway that involves (+)-4R-limonene, whereas limonene 3-hydroxylase was not enantioselective, and the activities of pulegone reductase and menthone reductase were too low to acquire meaningful kinetic data. Molecular modeling studies with docked ligands generally supported the experimental data obtained with peppermint enzymes, indicating that the preferred enantiomer was aligned well with the requisite cofactor and amino acid residues implicated in catalysis. A striking example for enantioselectivity was peppermint (-)-menthone reductase, which binds (-)-menthone with exquisite affinity but was predicted to bind (+)-menthone in a non-productive orientation that positions its carbonyl functional group at considerable distance to the NADPH cofactor. The work presented here lays the groundwork for structure-function studies aimed at unraveling how enantioselectivity evolved in closely related species of the Lamiaceae and beyond.


Assuntos
Lamiaceae/enzimologia , Mentha piperita/enzimologia , Oxigenases de Função Mista/metabolismo , Monoterpenos/metabolismo , Oxirredutases/metabolismo , Estereoisomerismo , Estrutura Molecular
9.
Front Plant Sci ; 12: 780970, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917113

RESUMO

Monoterpenoids are the main components of plant essential oils and the active components of some traditional Chinese medicinal herbs like Mentha haplocalyx Briq., Nepeta tenuifolia Briq., Perilla frutescens (L.) Britt and Pogostemin cablin (Blanco) Benth. Pulegone reductase is the key enzyme in the biosynthesis of menthol and is required for the stereoselective reduction of the Δ2,8 double bond of pulegone to produce the major intermediate menthone, thus determining the stereochemistry of menthol. However, the structural basis and mechanism underlying the stereoselectivity of pulegone reductase remain poorly understood. In this study, we characterized a novel (-)-pulegone reductase from Nepeta tenuifolia (NtPR), which can catalyze (-)-pulegone to (+)-menthone and (-)-isomenthone through our RNA-seq, bioinformatic analysis in combination with in vitro enzyme activity assay, and determined the structure of (+)-pulegone reductase from M. piperita (MpPR) by using X-ray crystallography, molecular modeling and docking, site-directed mutagenesis, molecular dynamics simulations, and biochemical analysis. We identified and validated the critical residues in the crystal structure of MpPR involved in the binding of the substrate pulegone. We also further identified that residues Leu56, Val282, and Val284 determine the stereoselectivity of the substrate pulegone, and mainly contributes to the product stereoselectivity. This work not only provides a starting point for the understanding of stereoselectivity of pulegone reductases, but also offers a basis for the engineering of menthone/menthol biosynthetic enzymes to achieve high-titer, industrial-scale production of enantiomerically pure products.

11.
Phytochemistry ; 190: 112829, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34329937

RESUMO

The pseudoalkaloid diterpene Taxol® (paclitaxel) emerged as a best-selling anti-cancer drug in the mid-1990s. The compound attracted considerable interest because of its unique mechanism to stabilize microtubules, thus reducing dynamicity and ultimately promoting mitotic arrest. Taxol was originally isolated from members of the genus Taxus. Over the last 50 years, close to 600 metabolites with taxane scaffolds were isolated from various Taxus species and their structures reported. The present review article provides an overview of the known chemical diversity of taxanes, with an emphasis on the functionalization of diterpene scaffolds. The implications of the occurrence of chemically diverse taxane metabolites for unraveling Taxol biosynthesis and enabling pathway engineering are discussed as well.


Assuntos
Antineoplásicos , Diterpenos , Taxus , Paclitaxel , Taxoides
13.
Front Plant Sci ; 11: 1217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973823

RESUMO

Mentha is a strongly scented herb of the Lamiaceae (formerly Labiatae) and includes about 30 species and hybrid species that are distributed or introduced throughout the globe. These fragrant plants have been selected throughout millennia for use by humans as herbs, spices, and pharmaceutical needs. The distilling of essential oils from mint began in Japan and England but has become a significant industrial product for the US, China, India, and other countries. The US Department of Agriculture (USDA), Agricultural Research Service, National Clonal Germplasm Repository (NCGR) maintains a mint genebank in Corvallis, Oregon. This facility preserves and distributes about 450 clones representing 34 taxa, hybrid species, advanced breeder selections, and F1 hybrids. Mint crop wild relatives are included in this unique resource. The majority of mint accessions and hybrids in this collection were initially donated in the 1970s by the A.M. Todd Company, located in Kalamazoo, Michigan. Other representatives of diverse mint taxa and crop wild relatives have since been obtained from collaborators in Australia, New Zealand, Europe, and Vietnam. These mints have been evaluated for cytology, oil components, verticillium wilt resistance, and key morphological characters. Pressed voucher specimens have been prepared for morphological identity verification. An initial set of microsatellite markers has been developed to determine clonal identity and assess genetic diversity. Plant breeders at private and public institutions are using molecular analysis to determine identity and diversity of the USDA mint collection. Evaluation and characterization includes essential oil content, disease resistance, male sterility, and other traits for potential breeding use. These accessions can be a source for parental genes for enhancement efforts to produce hybrids, or for breeding new cultivars for agricultural production. Propagules of Mentha are available for distribution to international researchers as stem cuttings, rhizome cuttings, or seed, which can be requested through the GRIN-Global database of the US National Plant Germplasm System, subject to international treaty and quarantine regulations.

14.
J Exp Bot ; 71(14): 4109-4124, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32296842

RESUMO

Isoprenoids constitute the largest class of plant natural products and have diverse biological functions including in plant growth and development. In potato (Solanum tuberosum), the regulatory mechanism underlying the biosynthesis of isoprenoids through the mevalonate pathway is unclear. We assessed the role of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) homologs in potato development and in the metabolic regulation of isoprenoid biosynthesis by generating transgenic lines with down-regulated expression (RNAi-hmgr) or overexpression (OE) of one (StHMGR1 or StHMGR3) or two genes, HMGR and farnesyl diphosphate synthase (FPS; StHMGR1/StFPS1 or StHMGR3/StFPS1). Levels of sterols, steroidal glycoalkaloids (SGAs), and plastidial isoprenoids were elevated in the OE-HMGR1, OE-HMGR1/FPS1, and OE-HMGR3/FPS1 lines, and these plants exhibited early flowering, increased stem height, increased biomass, and increased total tuber weight. However, OE-HMGR3 lines showed dwarfism and had the highest sterol amounts, but without an increase in SGA levels, supporting a rate-limiting role for HMGR3 in the accumulation of sterols. Potato RNAi-hmgr lines showed inhibited growth and reduced cytosolic isoprenoid levels. We also determined the relative importance of transcriptional control at regulatory points of isoprenoid precursor biosynthesis by assessing gene-metabolite correlations. These findings provide novel insights into specific end-products of the sterol pathway and could be important for crop yield and bioenergy crops.


Assuntos
Solanum tuberosum , Biomassa , Hidroximetilglutaril-CoA Redutases/genética , Solanum tuberosum/genética , Esteróis , Terpenos
15.
Biochemistry ; 59(17): 1661-1664, 2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32293167

RESUMO

Monoterpene synthases catalyze the first committed step in the biosynthesis of monoterpenes and are in part responsible for the enormous structural diversity among this class of metabolites. Here, we explore the structure-function relationships underlying the formation of limonene enantiomers in limonene synthases that bind geranyl diphosphate as a common substrate. On the basis of analyses that consider both crystal structure data and amino acid sequence divergence, we identified candidate active site residues with potential roles in catalyzing reactions that involve accommodating reaction intermediates of opposite enantiomeric series. We demonstrate that spearmint (-)-limonene synthase [which generates >99% (-)-limonene over (+)-limonene] can be converted into a mutant enzyme, by exchanging four residues (C321S, N345I, I453V, and M458V), which produces (+)-limonene with reversed enantiospecificity [80% (+)-limonene and 3% (-)-limonene; the remainder are mostly bicyclic monoterpenes]. This study provides the foundation for a more in-depth understanding of the formation of enantiomeric series of monoterpenes, which can have vastly different olfactory properties.


Assuntos
Liases Intramoleculares/metabolismo , Sequência de Aminoácidos , Liases Intramoleculares/química , Liases Intramoleculares/genética , Modelos Moleculares , Mutação , Conformação Proteica , Estereoisomerismo , Especificidade por Substrato
16.
Plant Sci ; 289: 110278, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31623774

RESUMO

The metabolic underpinnings of plant survival under severe drought-induced senescence conditions are poorly understood. In this study, we assessed the morphological, physiological and metabolic responses to sustained water deficit in Brachypodium distachyon, a model organism for research on temperate grasses. Relative to control plants, fresh biomass, leaf water potential, and chlorophyll levels decreased rapidly in plants grown under drought conditions, demonstrating an early onset of senescence. The leaf C/N ratio and protein content showed an increase in plants subjected to drought stress. The concentrations of several small molecule carbohydrates and amino acid-derived metabolites previously implicated in osmotic protection increased rapidly in plants experiencing water deficit. Malic acid, a low molecular weight organic acid with demonstrated roles in stomatal closure, also increased rapidly as a response to drought treatment. The concentrations of prenyl lipids, such as phytol and α-tocopherol, increased early during the drought treatment but then dropped dramatically. Surprisingly, continued changes in the quantities of metabolites were observed, even in samples harvested from visibly senesced plants. The data presented here provide insights into the processes underlying persistent metabolic activity during sustained water deficit and can aid in identifying mechanisms of drought tolerance in plants.


Assuntos
Brachypodium/fisiologia , Secas , Biomassa , Clorofila/metabolismo , Folhas de Planta/metabolismo , Estresse Fisiológico , Água/metabolismo
17.
Front Plant Sci ; 10: 868, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31354756

RESUMO

Members of the Psilotales (whisk ferns) have a unique anatomy, with conducting tissues but lacking true leaves and roots. Based on recent phyogenies, these features appear to represent a reduction from a more typical modern fern plant rather than the persistence of ancestral features. In this study, extracts of several Psilotum organs and tissues were analyzed by Gas Chromatography - Mass Spectrometry (GC-MS) and High Performance Liquid Chromatography - Quadrupole Time of Flight - Mass Spectrometry (HPLC-QTOF-MS). Some arylpyrones and biflavonoids had previously been reported to occur in Psilotum and these metabolite classes were found to be prominent constituents in the present study. Some of these were enriched and further characterized by Nuclear Magnetic Resonance (NMR) spectroscopy. HPLC-QTOF-MS and NMR data were searched against an updated Spektraris database (expanded by incorporating over 300 new arylpyrone and biflavonoid spectral records) to aid significantly with peak annotation. Principal Component Analysis (PCA) with combined GC-MS and HPLC-QTOF-MS data sets obtained with several Psilotum organs and tissues indicated a clear separation of the sample types. The principal component scores for below-ground rhizome samples corresponded to the vectors for carbohydrate monomers and dimers and small organic acids. Above-ground rhizome samples had principal component scores closer to the direction of vectors for arylpyrone glycosides and sucrose (which had high concentrations in above-and below-ground rhizomes). The unique position of brown synangia in a PCA plot correlated with the vector for biflavonoid glycosides. Principal component scores for green and yellow synangia correlated with the direction of vectors for arylpyrone glycosides and biflavonoid aglycones. Localization studies with cross sections of above-ground rhizomes, using Matrix-Assisted Laser Desorption/Ionization - Mass Spectrometry (MALDI-MS), provided evidence for a preferential accumulation of arylpyrone glycosides and biflavonoid aglycones in cells of the chlorenchyma. Our results indicate a differential localization of metabolites with potentially tissue-specific functions in defenses against biotic and abiotic stresses. The data are also a foundation for follow-up work to better understand chemical diversity in the Psilotales and other members of the fern lineage.

18.
Plant Physiol ; 180(4): 1877-1897, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31138625

RESUMO

Glandular trichomes are specialized anatomical structures that accumulate secretions with important biological roles in plant-environment interactions. These secretions also have commercial uses in the flavor, fragrance, and pharmaceutical industries. The capitate-stalked glandular trichomes of Cannabis sativa (cannabis), situated on the surfaces of the bracts of the female flowers, are the primary site for the biosynthesis and storage of resins rich in cannabinoids and terpenoids. In this study, we profiled nine commercial cannabis strains with purportedly different attributes, such as taste, color, smell, and genetic origin. Glandular trichomes were isolated from each of these strains, and cell type-specific transcriptome data sets were acquired. Cannabinoids and terpenoids were quantified in flower buds. Statistical analyses indicated that these data sets enable the high-resolution differentiation of strains by providing complementary information. Integrative analyses revealed a coexpression network of genes involved in the biosynthesis of both cannabinoids and terpenoids from imported precursors. Terpene synthase genes involved in the biosynthesis of the major monoterpenes and sesquiterpenes routinely assayed by cannabis testing laboratories were identified and functionally evaluated. In addition to cloning variants of previously characterized genes, specifically CsTPS14CT [(-)-limonene synthase] and CsTPS15CT (ß-myrcene synthase), we functionally evaluated genes that encode enzymes with activities not previously described in cannabis, namely CsTPS18VF and CsTPS19BL (nerolidol/linalool synthases), CsTPS16CC (germacrene B synthase), and CsTPS20CT (hedycaryol synthase). This study lays the groundwork for developing a better understanding of the complex chemistry and biochemistry underlying resin accumulation across commercial cannabis strains.


Assuntos
Alquil e Aril Transferases/metabolismo , Canabinoides/metabolismo , Cannabis/metabolismo , Proteínas de Plantas/metabolismo , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Cannabis/genética , Proteínas de Plantas/genética , Tricomas/genética
19.
J Exp Bot ; 70(1): 217-230, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312429

RESUMO

The shoot system of pines contains abundant resin ducts, which harbor oleoresins that play important roles in constitutive and inducible defenses. In a pilot study, we assessed the chemical diversity of oleoresins obtained from mature tissues of loblolly pine trees (Pinus taeda L.). Building on these data sets, we designed experiments to assess oleoresin biosynthesis in needles of 2-year-old saplings. Comparative transcriptome analyses of single cell types indicated that genes involved in the biosynthesis of oleoresins are significantly enriched in isolated epithelial cells of resin ducts, compared with those expressed in mesophyll cells. Simulations using newly developed genome-scale models of epithelial and mesophyll cells, which incorporate our data on oleoresin yield and composition as well as gene expression patterns, predicted that heterotrophic metabolism in epithelial cells involves enhanced levels of oxidative phosphorylation and fermentation (providing redox and energy equivalents). Furthermore, flux was predicted to be more evenly distributed across the metabolic network of mesophyll cells, which, in contrast to epithelial cells, do not synthesize high levels of specialized metabolites. Our findings provide novel insights into the remarkable specialization of metabolism in epithelial cells.


Assuntos
Pinus taeda/metabolismo , Extratos Vegetais/biossíntese , Proteínas de Plantas/metabolismo , Transcriptoma , Perfilação da Expressão Gênica , Genes de Plantas , Projetos Piloto , Extratos Vegetais/química , Folhas de Planta/metabolismo
20.
Trends Plant Sci ; 23(7): 638-647, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29735428

RESUMO

Many aromatic plants accumulate mixtures of secondary (or specialized) metabolites in anatomical structures called glandular trichomes (GTs). Different GT types may also synthesize different mixtures of secreted metabolites, and this contributes to the enormous chemical diversity reported to occur across species. Over the past two decades, significant progress has been made in characterizing the genes and enzymes that are responsible for the unique metabolic capabilities of GTs in different lineages of flowering plants. Less is known about the processes that regulate flux distribution through precursor pathways toward metabolic end-products. We discuss here the results from a meta-analysis of genome-scale models that were developed to capture the unique metabolic capabilities of different GT types.


Assuntos
Plantas/genética , Tricomas/genética , Magnoliopsida/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA