Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
3.
Radiother Oncol ; 182: 109571, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36822361

RESUMO

BACKGROUND AND PURPOSE: Radiation dose prescriptions are foundational for optimizing treatment efficacy and limiting treatment-related toxicity. We sought to assess the lack of standardization of SBRT dose prescriptions across institutions. MATERIALS & METHODS: Dosimetric data from 1298 patients from 9 academic institutions treated with IMRT and VMAT were collected. Dose parameters D100, D98, D95, D50, and D2 were used to assess dosimetric variability. RESULTS: Disease sites included lung (48.3 %) followed by liver (29.7 %), prostate (7.5 %), spine (6.8 %), brain (4.1 %), and pancreas (2.5 %). The PTV volume in lung varied widely with bimodality into two main groups (22.0-28.7 cm3) and (48.0-67.1 cm3). A hot spot ranging from 120-150 % was noted in nearly half of the patients, with significant variation across institutions. A D50 ≥ 110 % was found in nearly half of the institutions. There was significant dosimetric variation across institutions. CONCLUSIONS: The SBRT prescriptions in the literature or in treatment guidelines currently lack nuance and hence there is significant variation in dose prescriptions across academic institutions. These findings add greater importance to the identification of dose parameters associated with improved clinical outcome comparisons as we move towards more hypofractionated treatments. There is a need for standardized reporting to help institutions in adapting treatment protocols based on the outcome of clinical trials. Dosimetric parameters are subsequently needed for uniformity and thereby standardizing planning guidelines to maximize efficacy, mitigate toxicity, and reduce treatment disparities are urgently needed.


Assuntos
Radiocirurgia , Radioterapia de Intensidade Modulada , Masculino , Humanos , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica , Prescrições
4.
Mol Pharm ; 19(8): 2776-2794, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35834797

RESUMO

For many locally advanced tumors, the chemotherapy-radiotherapy (CT-RT) combination ("chemoradiation") is currently the standard of care. Intratumoral (IT) CT-based chemoradiation has the potential to overcome the limitations of conventional systemic CT-RT (side effects). For maximizing the benefits of IT CT-RT, our laboratory has previously developed a radiation-controlled drug release formulation, in which anticancer drug paclitaxel (PTX) and radioluminescent CaWO4 (CWO) nanoparticles (NPs) are co-encapsulated with poly(ethylene glycol)-poly(lactic acid) (PEG-PLA) block copolymers ("PEG-PLA/CWO/PTX NPs"). These PEG-PLA/CWO/PTX NPs enable radiation-controlled release of PTX and are capable of producing sustained therapeutic effects lasting for at least one month following a single IT injection. The present article focuses on discussing our recent finding about the effect of the stereochemical structure of PTX on the efficacy of this PEG-PLA/CWO/PTX NP formulation. Stereochemical differences in two different PTX compounds ("PTX-S" from Samyang Biopharmaceuticals and "PTX-B" from Biotang) were characterized by 2D heteronuclear/homonuclear NMR, Raman spectroscopy, and circular dichroism measurements. The difference in PTX stereochemistry was found to significantly influence their water solubility (WS); PTX-S (WS ≈ 4.69 µg/mL) is about 19 times more water soluble than PTX-B (WS ≈ 0.25 µg/mL). The two PTX compounds showed similar cancer cell-killing performances in vitro when used as free drugs. However, the subtle stereochemical difference significantly influenced their X-ray-triggered release kinetics from the PEG-PLA/CWO/PTX NPs; the more water-soluble PTX-S was released faster than the less water-soluble PTX-B. This difference was manifested in the IT pharmacokinetics and eventually in the survival percentages of test animals (mice) treated with PEG-PLA/CWO/PTX NPs + X-rays in an in vivo human tumor xenograft study; at short times (<1 month), concurrent PEG-PLA/CWO/PTX-S NPs produced a greater tumor-suppression effect, whereas PEG-PLA/CWO/PTX-B NPs had a longer-lasting radio-sensitizing effect. This study demonstrates the importance of the stereochemistry of a drug in a therapy based on a controlled release formulation.


Assuntos
Nanopartículas , Neoplasias , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Camundongos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Paclitaxel/química , Polietilenoglicóis/química , Água , Raios X
6.
J Control Release ; 303: 237-252, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31026550

RESUMO

The present work demonstrates a novel concept for intratumoral chemo-radio combination therapy for locally advanced solid tumors. For some locally advanced tumors, chemoradiation is currently standard of care. This combination treatment can cause acute and long term toxicity that can limit its use in older patients or those with multiple medical comorbidities. Intratumoral chemotherapy has the potential to address the problem of systemic toxicity that conventional chemotherapy suffers, and may, in our view, be a better strategy for treating certain locally advanced tumors. The present study proposes how intratumoral chemoradiation can be best implemented. The enabling concept is the use of a new chemotherapeutic formulation in which chemotherapy drugs (e.g., paclitaxel (PTX)) are co-encapsulated with radioluminecsnt nanoparticles (e.g., CaWO4 (CWO) nanoparticles (NPs)) within protective capsules formed by biocompatible/biodegradable polymers (e.g., poly(ethylene glycol)-poly(lactic acid) or PEG-PLA). This drug-loaded polymer-encapsulated radioluminescent nanoparticle system can be locally injected in solution form into the patient's tumor before the patient receives normal radiotherapy (e.g., 30-40 fractions of 2-3 Gy daily X-ray dose delivered over several weeks for locally advanced head and neck tumors). Under X-ray irradiation, the radioluminescent nanoparticles produce UV-A light that has a radio-sensitizing effect. These co-encapsulated radioluminescent nanoparticles also enable radiation-triggered release of chemo drugs from the polymer coating layer. The non-toxic nature (absence of dark toxicity) of this drug-loaded polymer-encapsulated radioluminescent nanoparticle ("PEG-PLA/CWO/PTX") formulation was confirmed by the MTT assay in cancer cell cultures. A clonogenic cell survival assay confirmed that these drug-loaded polymer-encapsulated radioluminescent nanoparticles significantly enhance the cancer cell killing effect of radiation therapy. In vivo study validated the efficacy of PEG-PLA/CWO/PTX-based intratumoral chemo-radio therapy in mouse tumor xenografts (in terms of tumor response and mouse survival). Results of a small-scale NP biodistribution (BD) study demonstrate that PEG-PLA/CWO/PTX NPs remained at the tumor sites for a long period of time (> 1 month) following direct intratumoral administration. A multi-compartmental pharmacokinetic model (with rate constants estimated from in vitro experiments) predicts that this radiation-controlled drug release technology enables significant improvements in the level and duration of drug availability within the tumor (throughout the typical length of radiation treatment, i.e., > 1 month) over conventional delivery systems (e.g., PEG-PLA micelles with no co-encapsulated CaWO4, or an organic liquid, e.g., a 50:50 mixture of Cremophor EL and ethanol, as in Taxol), while it is capable of maintaining the systemic level of the chemo drug far below the toxic threshold limit over the entire treatment period. This technology thus has the potential to offer a new therapeutic option that has not previously been available for patients excluded from conventional chemoradiation protocols.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Compostos de Cálcio/administração & dosagem , Sistemas de Liberação de Medicamentos , Substâncias Luminescentes/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Polietilenoglicóis/administração & dosagem , Compostos de Tungstênio/administração & dosagem , Animais , Antineoplásicos Fitogênicos/química , Compostos de Cálcio/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quimiorradioterapia , Liberação Controlada de Fármacos , Feminino , Humanos , Substâncias Luminescentes/química , Camundongos , Nanopartículas/química , Neoplasias/terapia , Paclitaxel/química , Polietilenoglicóis/química , Compostos de Tungstênio/química
7.
Clin Lung Cancer ; 20(3): 186-193.e3, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30711394

RESUMO

INTRODUCTION/BACKGROUND: Many patients with early stage non-small-cell lung cancer (ES-NSCLC) undergoing stereotactic body radiation therapy (SBRT) develop metastases, which is associated with poor outcomes. We sought to identify factors predictive of metastases after lung SBRT and created a risk stratification tool. MATERIALS AND METHODS: We included 363 patients with ES-NSCLC who received SBRT; the median follow-up was 5.8 years. The following patient and tumor factors were retrospectively analyzed for their association with metastases (defined as nodal and/or distant failure): gender; age; lobe involved; centrality; previous NSCLC; smoking status; gross tumor volume (GTV); T-stage; histology; dose; minimum, maximum, and mean GTV dose; and parenchymal lung failure. A metastasis risk-score linear-model using beta coefficients from a multivariate Cox model was built. RESULTS: A total of 111 (27.3%) of 406 lesions metastasized. GTV and dose were significantly associated with metastases on univariate and multivariate Cox proportional hazards modeling (P < .001 and hazard ratio [HR], 1.02 per mL; P < .05 and HR, 0.99 per Gy, respectively). Histology, T-stage, centrality, lung parenchymal failures, and previous NSCLC were not associated with development of metastasis. A metastasis risk-score model using GTV and prescription dose was built: risk score = (0.01611 × GTV) - (0.00525 × dose [BED10]). Two risk-score cutoffs separating the cohort into low-, medium-, and high-risk subgroups were examined. The risk score identified significant differences in time to metastases between low-, medium-, and high-risk patients (P < .001), with 3-year estimates of 81.1%, 63.8%, and 38%, respectively. CONCLUSION: GTV and radiation dose are associated with time to metastasis and may be used to identify patients at higher risk of metastasis after lung SBRT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Progressão da Doença , Feminino , Seguimentos , Humanos , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Prognóstico , Dosagem Radioterapêutica , Estudos Retrospectivos , Fatores de Risco , Falha de Tratamento , Carga Tumoral
8.
J Thorac Oncol ; 13(10): 1549-1559, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29959060

RESUMO

INTRODUCTION: It remains unclear if histology should be independently considered when choosing stereotactic ablative body radiotherapy dose prescriptions for NSCLC. METHODS: The study population included 508 patients with 561 lesions between 2000 and 2016, of which 442 patients with 482 lesions had complete dosimetric information. Eligible patients had histologically or clinically diagnosed early-stage NSCLC and were treated with 3 to 5 fractions. The primary endpoint was in-field tumor control censored by either death or progression. Involved lobe control was also assessed. RESULTS: At 6.7 years median follow-up, 3-year in-field control, involved lobe control, overall survival, and progression-free survival rates were 88.1%, 80.0%, 49.4%, and 37.2%, respectively. Gross tumor volume (GTV) (hazard ratio [HR] = 1.01 per mL, p = 0.0044) and histology (p = 0.0225) were independently associated with involved lobe failure. GTV (HR = 1.013, p = 0.001) and GTV dose (cutoff of 110 Gy, biologically effective dose with α/ß = 10 [BED10], HR = 2.380, p = 0.0084) were independently associated with in-field failure. For squamous cell carcinomas, lower prescription doses were associated with worse in-field control (12 Gy × 4 or 10 Gy × 5 versus 18 Gy or 20 Gy × 3: HR = 3.530, p = 0.0447, confirmed by propensity score matching) and was independent of GTV (HR = 1.014 per mL, 95% confidence interval: 1.005-1.022, p = 0.0012). For adenocarcinomas, there were no differences in in-field control observed using the above dose groupings (p = 0.12 and p = 0.31, respectively). CONCLUSIONS: In the absence of level I data, GTV and histology should be considered to personalize radiation dose for stereotactic ablative body radiotherapy. We suggest lower prescription doses (i.e., 12 Gy × 4 or 10 G × 5) should be avoided for squamous cell carcinomas if normal tissue tolerances are met.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/radioterapia , Neoplasias Pulmonares/radioterapia , Radiocirurgia/métodos , Dosagem Radioterapêutica/normas , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/patologia , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Carga Tumoral
9.
Pract Radiat Oncol ; 7(2): e145-e155, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28274405

RESUMO

PURPOSE: The purpose of this study was to evaluate dose prescription and recording compliance to international standard (International Commission on Radiation Units & Measurements [ICRU]-83) in patients treated with intensity modulated radiation therapy (IMRT) among academic institutions. METHODS AND MATERIALS: Ten institutions participated in this study to collect IMRT data to evaluate compliance to ICRU-83. Under institutional review board clearance, data from 5094 patients-including treatment site, technique, planner, physician, prescribed dose, target volume, monitor units, planning system, and dose calculation algorithm-were collected anonymously. The dose-volume histogram of each patient, as well as dose points, doses delivered to 100% (D100), 98% (D98), 95% (D95), 50% (D50), and 2% (D2), of sites was collected and sent to a central location for analysis. Homogeneity index (HI) as a measure of the steepness of target and is a measure of the shape of the dose-volume histogram was calculated for every patient and analyzed. RESULTS: In general, ICRU recommendations for naming the target, reporting dose prescription, and achieving desired levels of dose to target were relatively poor. The nomenclature for the target in the dose prescription had large variations, having every permutation of name and number contrary to ICRU recommendations. There was statistically significant variability in D95, D50, and HI among institutions, tumor site, and technique with P values < .01. Nearly 95% of patients had D50 higher than 100% (103.5 ± 6.9) of prescribed dose and varied among institutions. On the other hand, D95 was close to 100% (97.1 ± 9.4) of prescribed dose. Liver and lung sites had a higher D50 compared with other sites. Pelvic sites had a lower variability indicated by HI (0.13 ± 1.21). Variability in D50 is 101.2 ± 8.5, 103.4 ± 6.8, 103.4 ± 8.2, and 109.5 ± 11.5 for IMRT, tomotherapy, volume modulated arc therapy, and stereotactic body radiation therapy with IMRT, respectively. CONCLUSIONS: Nearly 95% of patient treatments deviated from the ICRU-83 recommended D50 prescription dose delivery. This variability is significant (P < .01) in terms of treatment site, technique, and institution. To reduce dosimetric and associated radiation outcome variability, dose prescription in every clinical trial should be unified with international guidelines.


Assuntos
Fidelidade a Diretrizes/estatística & dados numéricos , Guias de Prática Clínica como Assunto , Radioterapia de Intensidade Modulada/normas , Análise de Variância , Humanos , Masculino , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Resultado do Tratamento
10.
JAMA Otolaryngol Head Neck Surg ; 142(10): 972-979, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27467967

RESUMO

Importance: The accuracy of the American College of Surgeons National Surgical Quality Improvement Program (NSQIP) risk calculator has been assessed in multiple surgical subspecialties; however, there have been no publications doing the same in the head and neck surgery literature. Objective: To evaluate the accuracy of the calculator's predictions in a single institution's total laryngectomy (TL) population. Design, Setting, and Participants: Total laryngectomies performed between 2013 and 2014 at a tertiary referral academic center were evaluated using the risk calculator. Predicted 30-day outcomes were compared with observed outcomes for return to operating room, surgical site infection, postoperative pneumonia, length of stay, and venous thromboembolism. Main Outcomes and Measures: Comparison of the NSQIP risk calculator's predicted postoperative complication rates and length of stay to what occurred in this patient cohort using percent error, Brier scores, area under the receiver operating characteristic curve, and Pearson correlation analysis. Results: Of 49 patients undergoing TL, the mean (SD) age at operation was 59 (9.3) years, with 67% male. The risk calculator had limited efficacy predicting perioperative complications in this group of patients undergoing TL with or without free tissue reconstruction or preoperative chemoradiation or radiation therapy with a few exceptions. The calculator overestimated the occurrence of pneumonia by 165%, but underestimated surgical site infection by 7%, return to operating room by 24%, and length of stay by 13%. The calculator had good sensitivity and specificity of predicting surgical site infection for patients undergoing TL with free flap reconstruction (area under the curve, 0.83). For all other subgroups, however, the calculator had poor sensitivity and specificity for predicting complications. Conclusions and Relevance: The risk calculator has limited utility for predicting perioperative complications in patients undergoing TL. This is likely due to the complexity of the treatment of patients with head and neck cancer and factors not taken into account when calculating a patient's risk.


Assuntos
Laringectomia , Complicações Pós-Operatórias , Feminino , Previsões , Humanos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/prevenção & controle , Melhoria de Qualidade , Medição de Risco/métodos
11.
Health Care Manag Sci ; 15(2): 138-54, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22231648

RESUMO

This paper proposes a novel mathematical approach to the beam selection problem in intensity modulated radiation therapy (IMRT) planning. The approach allows more beams to be used over the course of therapy while limiting the number of beams required in any one session. In the proposed field rotation method, several sets of beams are interchanged throughout the treatment to allow a wider selection of beam angles than would be possible with fixed beam orientations. The choice of beamlet intensities and the number of identical fractions for each set are determined by a mixed integer linear program that controls jointly for the distribution per fraction and the cumulative dose distribution delivered to targets and critical structures. Trials showed the method allowed substantial increases in the dose objective and/or sparing of normal tissues while maintaining cumulative and fraction size limits. Trials for a head and neck site showed gains of 25%-35% in the objective (average tumor dose) and for a thoracic site gains were 7%-13%, depending on how strict the fraction size limits were set. The objective did not rise for a prostate site significantly, but the tolerance limits on normal tissues could be strengthened with the use of multiple beam sets.


Assuntos
Fracionamento da Dose de Radiação , Neoplasias/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Técnicas de Apoio para a Decisão , Humanos , Radioterapia de Intensidade Modulada/efeitos adversos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA