Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 88(7): 1833-1846, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830999

RESUMO

Illicit connections of wastewater to stormwater systems are the main drawback of separate sewer systems, as they lead to a direct discharge of untreated wastewater to the aquatic environment. Consequently, several inspection methods have been developed for detecting illicit connections. This study simultaneously applied several low- and high-tech methods for the detection of illicit connections in the same catchment (De Heuvel, the Netherlands). The methods included mesh wire screens for capturing coarse contamination, measurements of electroconductivity and temperature, sampling and quantification of Escherichia coli and extended-spectrum ß-lactamase-producing E. coli (ESBL-EC), DNA analysis via quantitative polymerase chain reaction for human-, dog-, and bird-specific fecal indicators, and distributed temperature sensing. Significant illicit connections could be identified using all methods. Nonetheless, hydraulic conditions and, predominantly, the sewage volume determine whether a misconnection can be detected by especially the low-tech methods. Using these results, the identified misconnections were repaired and biological and DNA analyses were repeated. Our results demonstrate that there were no changes in E. coli or ESBL-EC before and after mitigation, suggesting that these common markers of fecal contamination are not specific enough to evaluate the performance of mitigation efforts. However, a marked decrease in human wastewater markers (HF183) was observed.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Animais , Humanos , Cães , Monitoramento Ambiental/métodos , Escherichia coli/genética , Esgotos/análise , Fezes/química , DNA
2.
Water Res ; 235: 119883, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989804

RESUMO

The ecological state of receiving water bodies can be significantly influenced by organic micropollutants that are emitted via stormwater runoff. Reported efforts to quantify the emission of micropollutants mainly focus on sampling at combined sewer overflows and storm sewer outfalls, which can be challenging. An alternative method, called fingerprinting, was developed and tested in this study. The fingerprinting method utilizes wastewater treatment plant (WWTP) influent samples and derives the proportion of stormwater in a sample. This is achieved by comparing the wet weather vs dry weather concentrations of substances-tracers which are present only in wastewater. It is then possible to estimate the concentration of organic micropollutants in stormwater runoff from measurements in the influent of a WWTP based on a mass balance. In this research, the fingerprinting method was applied in influent samples obtained in five WWTPs in the Netherlands. In total, 28 DWF and 22 WWF samples were used. The chosen tracers were ibuprofen, 2-hydroxyibuprofen, naproxen and diclofenac. Subsequently, the concentration in stormwater runoff of 403 organic micropollutants was estimated via the WWF samples. The substances that were present and analyzed included glyphosate and AMPA, 24 out of 254 pesticides, 6 out of 28 organochlorine pesticides, 45 out of 63 pharmaceuticals, 15 out of 15 PAHs, 2 of the 7 PCBs, and 20 of 33 other substances (e.g. bisphenol-A). A comparison with findings from other studies suggested that the fingerprinting method yields trustworthy results. It was also noted that a representative and stable dry weather flow reference concentration is a strict requirement for the successful application of the proposed method.


Assuntos
Praguicidas , Poluentes Químicos da Água , Esgotos , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Águas Residuárias , Praguicidas/análise
3.
Environ Sci Pollut Res Int ; 27(13): 14237-14258, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31273657

RESUMO

Water quality environmental assessment often requires the joint simulation of several subsystems (e.g. wastewater treatment processes, urban drainage and receiving water bodies). The complexity of these integrated catchment models grows fast, leading to potentially over-parameterised and computationally expensive models. The receiving water body physical and biochemical parameters are often a dominant source of uncertainty when simulating dissolved oxygen depletion processes. Thus, the use of system observations to refine prior knowledge (from experts or literature) is usually required. Unfortunately, simulating real-world scale water quality processes results in a significant computational burden, for which the use of sampling intensive applications (e.g. parametric inference) is severely hampered. Data-driven emulation aims at creating an interpolation map between the parametric and output multidimensional spaces of a dynamic simulator, thus providing a fast approximation of the model response. In this study a large-scale integrated urban water quality model is used to simulate dissolved oxygen depletion processes in a sensitive river. A polynomial expansion emulator was proposed to approximate the link between four and eight river physical and biochemical river parameters and the dynamics of river flow and dissolved oxygen concentration during one year (at hourly frequency). The emulator scheme was used to perform a sensitivity analysis and a formal parametric inference using local system observations. The effect of different likelihood assumptions (e.g. heteroscedasticity, normality and autocorrelation) during the inference of dissolved oxygen processes is also discussed. This study shows how the use of data-driven emulators can facilitate the integration of formal uncertainty analysis schemes in the hydrological and water quality modelling community.


Assuntos
Modelos Teóricos , Qualidade da Água , Algoritmos , Rios , Incerteza
4.
Water Res ; 158: 46-60, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31015142

RESUMO

Receiving water quality simulation in highly urbanised areas requires the integration of several processes occurring at different space-time scales. These integrated catchment models deliver results with a significant uncertainty level associated. Still, uncertainty analysis is seldom applied in practice and the relative contribution of the individual model elements is poorly understood. Often the available methods are applied to relatively small systems or individual sub-systems, due to limitations in organisational and computational resources. Consequently this work presents an uncertainty propagation and decomposition scheme of an integrated water quality modelling study for the evaluation of dissolved oxygen dynamics in a large-scale urbanised river catchment in the Netherlands. Forward propagation of the measured and elicited uncertainty input-parametric distributions was proposed and contrasted with monitoring data series. Prior ranges for river water quality-quantity parameters lead to high uncertainty in dissolved oxygen predictions, thus the need for formal calibration to adapt to the local dynamics is highlighted. After inferring the river process parameters with system measurements of flow and dissolved oxygen, combined sewer overflow pollution loads became the dominant uncertainty source along with rainfall variability. As a result, insights gained in this paper can help in planning and directing further monitoring and modelling efforts in the system. When comparing these modelling results to existing national guidelines it is shown that the commonly used concentration-duration-frequency tables should not be the only metric used to select mitigation alternatives and may need to be adapted in order to cope with uncertainties.


Assuntos
Modelos Teóricos , Qualidade da Água , Monitoramento Ambiental , Países Baixos , Rios , Incerteza
5.
Water Res ; 142: 512-527, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012289

RESUMO

This work presents a method to emulate the flow dynamics of physically based hydrodynamic simulators under variations of time-dependent rainfall and parametric scenarios. Although surrogate modelling is often employed to deal with the computational burden of this type of simulators, common techniques used for model emulation as polynomial expansions or Gaussian processes cannot deal with large parameter space dimensionality. This restricts their applicability to a reduced number of static parameters under a fixed rainfall process. The technique presented combines the use of a modified Unit Hydrograph (UH) scheme and a polynomial chaos expansion (PCE) to emulate flow from physically based hydrodynamic models. The novel element of the proposed methodology is that the emulator compensates for the errors induced by the assumptions of proportionality and superposition of the UH theory when dealing with non-linear model structures, whereas it approximates properly the behaviour of a physically based simulator to new (spatially-uniform) rainfall time-series and parametric scenarios. The computational time is significantly reduced, which makes the practical use of the model feasible (e.g. real time control, flood warning schemes, hydraulic structures design, parametric inference etc.). The applicability of this methodology is demonstrated in three case studies, through the emulation of a simplified non-linear tank-in-series routing structure and of the 2D Shallow Water Equations (2D-SWE) solution (FLOW-R2D) in two computational domains. Results indicate that the proposed emulator can approximate with a high degree of accuracy the behaviour of the original models under a wide range of rainfall inputs and parametric values.


Assuntos
Chuva/química , Algoritmos , Inundações , Hidrodinâmica , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA