Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; 63(28): 9425-9435, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35585831

RESUMO

Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.


Assuntos
Contaminação de Alimentos , Embalagem de Alimentos , Humanos , Contaminação de Alimentos/análise , Substâncias Perigosas/análise , Bases de Dados Factuais , Plásticos
2.
J Hazard Mater ; 430: 128410, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35295000

RESUMO

Chemicals can migrate from polyethylene terephthalate (PET) drink bottles to their content and recycling processes may concentrate or introduce new chemicals to the PET value chain. Therefore, even though recycling PET bottles is key in reducing plastic pollution, it may raise concerns about safety and quality. This study provides a systematic evidence map of the food contact chemicals (FCCs) that migrate from PET drink bottles aiming to identify challenges in closing the plastic packaging loop. The migration potential of 193 FCCs has been investigated across the PET drink bottles lifecycle, of which 150 have been detected to migrate from PET bottles into food simulants/food samples. The study reveals that much research has focused on the migration of antimony (Sb), acetaldehyde and some well-known endocrine-disrupting chemicals (EDCs). It indicates and discusses the key influential factors on FCCs migration, such as physical characteristics and geographical origin of PET bottles, storage conditions, and reprocessing efficiency . Although, safety and quality implications arising from the recycling of PET bottles remain underexplored, the higher migration of Sb and Bishphenol A has been reported in recycled (rPET) compared to virgin PET. This is attributed to multiple contamination sources and the variability in the collection, sorting, and decontamination efficiency. Better collaboration among stakeholders across the entire PET bottles lifecycle is needed to ensure sustainable resource management and food contact safety of rPET.


Assuntos
Plásticos , Polietilenotereftalatos , Acetaldeído , Antimônio , Polietilenotereftalatos/química , Reciclagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA