Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant J ; 118(4): 1071-1085, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38294345

RESUMO

Hybrid breeding is a promising strategy to quickly improve wheat yield and stability. Due to the usefulness of the Rht 'Green Revolution' dwarfing alleles, it is important to gain a better understanding of their impact on traits related to hybrid development. Traits associated with cross-pollination efficiency were studied using Near Isogenic Lines carrying the different sets of alleles in Rht genes: Rht1 (semi-dwarf), Rht2 (semi-dwarf), Rht1 + 2 (dwarf), Rht3 (extreme dwarf), Rht2 + 3 (extreme dwarf), and rht (tall) during four growing seasons. Results showed that the extreme dwarfing alleles Rht2 + 3, Rht3, and Rht1 + 2 presented the greatest effects in all the traits analyzed. Plant height showed reductions up to 64% (Rht2 + 3) compared to rht. Decreases up to 20.2% in anther length and 33% in filament length (Rht2 + 3) were observed. Anthers extrusion decreased from 40% (rht) to 20% (Rht1 and Rht2), 11% (Rht3), 8.3% (Rht1 + 2), and 6.5% (Rht2 + 3). Positive correlations were detected between plant height and anther extrusion, anther, and anther filament lengths, suggesting the negative effect of dwarfing alleles. Moreover, the magnitude of these negative impacts depends on the combination of the alleles: Rht2 + 3 > Rht3/Rht1 + 2 > Rht2/Rht1 > rht (tall). Reductions were consistent across genotypes and environments with interactions due to magnitude effects. Our results indicate that Rht alleles are involved in multiple traits of interest for hybrid wheat production and the need to select alternative sources for reduced height/lodging resistance for hybrid breeding programs.


Assuntos
Alelos , Flores , Polinização , Triticum , Triticum/genética , Triticum/fisiologia , Triticum/crescimento & desenvolvimento , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Melhoramento Vegetal/métodos , Fenótipo , Genes de Plantas/genética
2.
Front Plant Sci ; 14: 1187563, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600206

RESUMO

Asparagus samples were examined from growing areas of Germany and selected European as well as North, Central and South American countries. Overall, 474 samples were analyzed for Asparagus virus 1 (AV1) using DAS-ELISA. In our survey, 19 AV1 isolates were further characterized. Experimental transmission to 11 species belonging to Aizoaceae, Amarantaceae, Asparagaceae, and Solanaceae succeeded. The ultrastructure of AV1 infection in asparagus has been revealed and has been compared with the one in indicator plants. The cylindrical inclusion (CI) protein, a core factor in viral replication, localized within the cytoplasm and in systemic infections adjacent to the plasmodesmata. The majority of isolates referred to pathotype I (PI). These triggered a hypersensitive resistance in inoculated leaves of Chenopodium spp. and were incapable of infecting Nicotiana spp. Only pathotype II (PII) and pathotype III (PIII) infected Nicotiana benthamiana systemically but differed in their virulence when transmitted to Chenopodium spp. The newly identified PIII generated amorphous inclusion bodies and degraded chloroplasts during systemic infection but not in local lesions of infected Chenopodium spp. PIII probably evolved via recombination in asparagus carrying a mixed infection by PI and PII. Phylogeny of the coat protein region recognized two clusters, which did not overlap with the CI-associated grouping of pathotypes. These results provide evidence for ongoing modular evolution of AV1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA