Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(19): eadl4481, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38728393

RESUMO

Screening, a ubiquitous phenomenon associated with the shielding of electric fields by surrounding charges, has been widely adopted as a means to modify a material's properties. While most studies have relied on static changes of screening through doping or gating thus far, here we demonstrate that screening can also drive the onset of distinct quantum states on the ultrafast timescale. By using time- and angle-resolved photoemission spectroscopy, we show that intense optical excitation can drive 1T-TiSe2, a prototypical charge density wave material, almost instantly from a gapped into a semimetallic state. By systematically comparing changes in band structure over time and excitation strength with theoretical calculations, we find that the appearance of this state is likely caused by a dramatic reduction of the screening length. In summary, this work showcases how optical excitation enables the screening-driven design of a nonequilibrium semimetallic phase in TiSe2, possibly providing a general pathway into highly screened phases in other strongly correlated materials.

2.
Nano Lett ; 23(15): 6799-6806, 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486984

RESUMO

Near the magic angle, strong correlations drive many intriguing phases in twisted bilayer graphene (tBG) including unconventional superconductivity and chern insulation. Whether correlations can tune symmetry breaking phases in tBG at intermediate (≳ 2°) twist angles remains an open fundamental question. Here, using ARPES, we study the effects of many-body interactions and displacement field on the band structure of tBG devices at an intermediate (3°) twist angle. We observe a layer- and doping-dependent renormalization of bands at the K points that is qualitatively consistent with moiré models of the Hartree-Fock interaction. We provide evidence of correlation-enhanced inversion symmetry-breaking, manifested by gaps at the Dirac points that are tunable with doping. These results suggest that electronic interactions play a significant role in the physics of tBG even at intermediate twist angles and present a new pathway toward engineering band structure and symmetry-breaking phases in moiré heterostructures.

3.
Phys Rev Lett ; 131(2): 026701, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37505968

RESUMO

In kagome metal CsV_{3}Sb_{5}, multiple intertwined orders are accompanied by both electronic and structural instabilities. These exotic orders have attracted much recent attention, but their origins remain elusive. The newly discovered CsTi_{3}Bi_{5} is a Ti-based kagome metal to parallel CsV_{3}Sb_{5}. Here, we report angle-resolved photoemission experiments and first-principles calculations on pristine and Cs-doped CsTi_{3}Bi_{5} samples. Our results reveal that the van Hove singularity (vHS) in CsTi_{3}Bi_{5} can be tuned in a large energy range without structural instability, different from that in CsV_{3}Sb_{5}. As such, CsTi_{3}Bi_{5} provides a complementary platform to disentangle and investigate the electronic instability with a tunable vHS in kagome metals.

4.
Nature ; 614(7947): 249-255, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36755173

RESUMO

The exciton, a bound state of an electron and a hole, is a fundamental quasiparticle induced by coherent light-matter interactions in semiconductors. When the electrons and holes are in distinct spatial locations, spatially indirect excitons are formed with a much longer lifetime and a higher condensation temperature. One of the ultimate frontiers in this field is to create long-lived excitonic topological quasiparticles by driving exciton states with topological properties, to simultaneously leverage both topological effects and correlation1,2. Here we reveal the existence of a transient excitonic topological surface state (TSS) in a topological insulator, Bi2Te3. By using time-, spin- and angle-resolved photoemission spectroscopy, we directly follow the formation of a long-lived exciton state as revealed by an intensity buildup below the bulk-TSS mixing point and an anomalous band renormalization of the continuously connected TSS in the momentum space. Such a state inherits the spin-polarization of the TSS and is spatially indirect along the z axis, as it couples photoinduced surface electrons and bulk holes in the same momentum range, which ultimately leads to an excitonic state of the TSS. These results establish Bi2Te3 as a possible candidate for the excitonic condensation of TSSs3 and, in general, opens up a new paradigm for exploring the momentum space emergence of other spatially indirect excitons, such as moiré and quantum well excitons4-6, and for the study of non-equilibrium many-body topological physics.

5.
Nat Mater ; 22(2): 200-206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646794

RESUMO

Crystalline symmetries have played a central role in the identification and understanding of quantum materials. Here we investigate whether an amorphous analogue of a well known three-dimensional strong topological insulator has topological properties in the solid state. We show that amorphous Bi2Se3 thin films host a number of two-dimensional surface conduction channels. Our angle-resolved photoemission spectroscopy data are consistent with a dispersive two-dimensional surface state that crosses the bulk gap. Spin-resolved photoemission spectroscopy shows this state has an anti-symmetric spin texture, confirming the existence of spin-momentum locked surface states. We discuss these experimental results in light of theoretical photoemission spectra obtained with an amorphous topological insulator tight-binding model, contrasting it with alternative explanations. The discovery of spin-momentum locked surface states in amorphous materials opens a new avenue to characterize amorphous matter, and triggers the search for an overlooked subset of quantum materials outside of current classification schemes.

6.
Sci Rep ; 12(1): 15860, 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36151110

RESUMO

The formation of a charge density wave state is characterized by an order parameter. The way it is established provides unique information on both the role that correlation plays in driving the charge density wave formation and the mechanism behind its formation. Here we use time and angle resolved photoelectron spectroscopy to optically perturb the charge-density phase in 1T-TiSe[Formula: see text] and follow the recovery of its order parameter as a function of energy, momentum and excitation density. Our results reveal that two distinct orders contribute to the gap formation, a CDW order and pseudogap-like order, manifested by an overall robustness to optical excitation. A detailed analysis of the magnitude of the the gap as a function of excitation density and delay time reveals the excitonic long-range nature of the CDW gap and the short-range Jahn-Teller character of the pseudogap order. In contrast to the gap, the intensity of the folded Se[Formula: see text]* band can only give access to the excitonic order. These results provide new information into the the long standing debate on the origin of the gap in TiSe[Formula: see text] and place it in the same context of other quantum materials where a pseudogap phase appears to be a precursor of long-range order.

7.
Materials (Basel) ; 15(8)2022 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-35454435

RESUMO

A flat band structure in momentum space is considered key for the realization of novel phenomena. A topological flat band, also known as a drumhead state, is an ideal platform to drive new exotic topological quantum phases. Using angle-resolved photoemission spectroscopy experiments, we reveal the emergence of a highly localized surface state in a topological semimetal BaAl4 and provide its full energy and momentum space topology. We find that the observed surface state is localized in momentum, inside a square-shaped bulk Dirac nodal loop, and in energy, leading to a flat band and a peak in the density of state. These results imply this class of materials as an experimental realization of drumhead surface states and provide an important reference for future studies of the fundamental physics of correlated quantum effects in topological materials.

8.
Science ; 375(6576): 76-81, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34855511

RESUMO

The study of quantum phase transitions that are not clearly associated with broken symmetry is a major effort in condensed matter physics, particularly in regard to the problem of high-temperature superconductivity, for which such transitions are thought to underlie the mechanism of superconductivity itself. Here we argue that the putative quantum critical point in the prototypical unconventional superconductor CeCoIn5 is characterized by the delocalization of electrons in a transition that connects two Fermi surfaces of different volumes, with no apparent broken symmetry. Drawing on established theory of f-electron metals, we discuss an interpretation for such a transition that involves the fractionalization of spin and charge, a model that effectively describes the anomalous transport behavior we measured for the Hall effect.

9.
Sci Adv ; 7(37): eabf4387, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516763

RESUMO

The search for materials with flat electronic bands continues due to their potential to drive strong correlation and symmetry breaking orders. Electronic moirés formed in van der Waals heterostructures have proved to be an ideal platform. However, there is no holistic experimental picture for how superlattices modify electronic structure. By combining spatially resolved angle-resolved photoemission spectroscopy with optical spectroscopy, we report the first direct evidence of how strongly correlated phases evolve from a weakly interacting regime in a transition metal dichalcogenide superlattice. By comparing short and long wave vector moirés, we find that the electronic structure evolves into a highly localized regime with increasingly flat bands and renormalized effective mass. The flattening is accompanied by the opening of a large gap in the spectral function and splitting of the exciton peaks. These results advance our understanding of emerging phases in moiré superlattices and point to the importance of interlayer physics.

10.
Nat Commun ; 10(1): 5534, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31797932

RESUMO

The emergence of saddle-point Van Hove singularities (VHSs) in the density of states, accompanied by a change in Fermi surface topology, Lifshitz transition, constitutes an ideal ground for the emergence of different electronic phenomena, such as superconductivity, pseudo-gap, magnetism, and density waves. However, in most materials the Fermi level, [Formula: see text], is too far from the VHS where the change of electronic topology takes place, making it difficult to reach with standard chemical doping or gating techniques. Here, we demonstrate that this scenario can be realized at the interface between a Mott insulator and a band insulator as a result of quantum confinement and correlation enhancement, and easily tuned by fine control of layer thickness and orbital occupancy. These results provide a tunable pathway for Fermi surface topology and VHS engineering of electronic phases.

11.
ACS Nano ; 13(11): 12710-12718, 2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31638764

RESUMO

Recent direct experimental observation of multiple highly dispersive C60 valence bands has allowed for a detailed analysis of the unusual photoemission traits of these features through photon energy- and polarization-dependent measurements. Previously obscured dispersions and strong photoemission traits are now revealed by specific light polarizations. The observed intensity effects prove the locking in place of the C60 molecules at low temperatures and the existence of an orientational order imposed by the substrate chosen. Most importantly, photon energy- and polarization-dependent effects are shown to be intimately linked with the orbital character of the C60 band manifolds which allow for a more precise determination of the orbital character within the third highest occupied molecular orbital (HOMO-2). Our observations and analysis provide important considerations for the connection between molecular and crystalline C60 electronic structure, past and future band structure studies, and for increasingly popular C60 electronic device applications, especially those making use of heterostructures.

12.
Rev Sci Instrum ; 90(2): 023105, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831755

RESUMO

Time- and angle-resolved photoelectron spectroscopy (trARPES) is a powerful method to track the ultrafast dynamics of quasiparticles and electronic bands in energy and momentum space. We present a setup for trARPES with 22.3 eV extreme-ultraviolet (XUV) femtosecond pulses at 50-kHz repetition rate, which enables fast data acquisition and access to dynamics across momentum space with high sensitivity. The design and operation of the XUV beamline, pump-probe setup, and ultra-high vacuum endstation are described in detail. By characterizing the effect of space-charge broadening, we determine an ultimate source-limited energy resolution of 60 meV, with typically 80-100 meV obtained at 1-2 × 1010 photons/s probe flux on the sample. The instrument capabilities are demonstrated via both equilibrium and time-resolved ARPES studies of transition-metal dichalcogenides. The 50-kHz repetition rate enables sensitive measurements of quasiparticles at low excitation fluences in semiconducting MoSe2, with an instrumental time resolution of 65 fs. Moreover, photo-induced phase transitions can be driven with the available pump fluence, as shown by charge density wave melting in 1T-TiSe2. The high repetition-rate setup thus provides a versatile platform for sensitive XUV trARPES, from quenching of electronic phases down to the perturbative limit.

13.
Science ; 362(6420): 1271-1275, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30545882

RESUMO

Cuprate superconductors have long been thought of as having strong electronic correlations but negligible spin-orbit coupling. Using spin- and angle-resolved photoemission spectroscopy, we discovered that one of the most studied cuprate superconductors, Bi2212, has a nontrivial spin texture with a spin-momentum locking that circles the Brillouin zone center and a spin-layer locking that allows states of opposite spin to be localized in different parts of the unit cell. Our findings pose challenges for the vast majority of models of cuprates, such as the Hubbard model and its variants, where spin-orbit interaction has been mostly neglected, and open the intriguing question of how the high-temperature superconducting state emerges in the presence of this nontrivial spin texture.

14.
Nano Lett ; 18(6): 3661-3666, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29761696

RESUMO

The interaction between a magnetic impurity, such as cerium (Ce) atom, and surrounding electrons has been one of the core problems in understanding many-body interaction in solid and its relation to magnetism. Kondo effect, the formation of a new resonant ground state with quenched magnetic moment, provides a general framework to describe many-body interaction in the presence of magnetic impurity. In this Letter, a combined study of angle-resolved photoemission (ARPES) and dynamic mean-field theory (DMFT) on Ce-intercalated graphene shows that Ce-induced localized states near Fermi energy, EF, hybridized with the graphene π-band, exhibit gradual increase in spectral weight upon decreasing temperature. The observed temperature dependence follows the expectations from the Kondo picture in the weak coupling limit. Our results provide a novel insight how Kondo physics emerges in the sea of two-dimensional Dirac electrons.

15.
Sci Adv ; 3(11): e1600735, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29202025

RESUMO

The ability to probe symmetry-breaking transitions on their natural time scales is one of the key challenges in nonequilibrium physics. Stripe ordering represents an intriguing type of broken symmetry, where complex interactions result in atomic-scale lines of charge and spin density. Although phonon anomalies and periodic distortions attest the importance of electron-phonon coupling in the formation of stripe phases, a direct time-domain view of vibrational symmetry breaking is lacking. We report experiments that track the transient multi-terahertz response of the model stripe compound La1.75Sr0.25NiO4, yielding novel insight into its electronic and structural dynamics following an ultrafast optical quench. We find that although electronic carriers are immediately delocalized, the crystal symmetry remains initially frozen-as witnessed by time-delayed suppression of zone-folded Ni-O bending modes acting as a fingerprint of lattice symmetry. Longitudinal and transverse vibrations react with different speeds, indicating a strong directionality and an important role of polar interactions. The hidden complexity of electronic and structural coupling during stripe melting and formation, captured here within a single terahertz spectrum, opens new paths to understanding symmetry-breaking dynamics in solids.

16.
Nano Lett ; 17(10): 5914-5918, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28906124

RESUMO

The electron band structure of graphene on SrTiO3 substrate has been investigated as a function of temperature. The high-resolution angle-resolved photoemission study reveals that the spectral width at Fermi energy and the Fermi velocity of graphene on SrTiO3 are comparable to those of graphene on a BN substrate. Near the charge neutrality, the energy-momentum dispersion of graphene exhibits a strong deviation from the well-known linearity, which is magnified as temperature decreases. Such modification resembles the characteristics of enhanced electron-electron interaction. Our results not only suggest that SrTiO3 can be a plausible candidate as a substrate material for applications in graphene-based electronics but also provide a possible route toward the realization of a new type of strongly correlated electron phases in the prototypical two-dimensional system via the manipulation of temperature and a proper choice of dielectric substrates.

17.
Nanoscale ; 9(32): 11498-11503, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28766659

RESUMO

The interaction between graphene and substrates provides a viable route to enhance the functionality of both materials. Depending on the nature of electronic interaction at the interface, the electron band structure of graphene is strongly influenced, allowing us to make use of the intrinsic properties of graphene or to design additional functionalities in graphene. Here, we present an angle-resolved photoemission study on the interaction between graphene and a platinum substrate. The formation of an interface between graphene and platinum leads to a strong deviation in the electronic structure of graphene not only from its freestanding form but also from the behavior observed on typical metals. The combined study on the experimental and theoretical electron band structure unveils the unique electronic properties of graphene on a platinum substrate, which singles out graphene/platinum as a model system investigating graphene on a metallic substrate with strong interaction.

18.
ACS Nano ; 11(5): 4686-4693, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28437062

RESUMO

Charge transfer at the interface between dissimilar materials is at the heart of electronics and photovoltaics. Here we study the molecular orientation, electronic structure, and local charge transfer at the interface region of C60 deposited on graphene, with and without supporting substrates such as hexagonal boron nitride. We employ ab initio density functional theory with van der Waals interactions and experimentally characterize interface devices using high-resolution transmission electron microscopy and electronic transport. Charge transfer between C60 and the graphene is found to be sensitive to the nature of the underlying supporting substrate and to the crystallinity and local orientation of the C60. Even at room temperature, C60 molecules interfaced to graphene are orientationally locked into position. High electron and hole mobilities are preserved in graphene with crystalline C60 overlayers, which has ramifications for organic high-mobility field-effect devices.

19.
Phys Rev Lett ; 118(9): 097001, 2017 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-28306293

RESUMO

One of the most puzzling features of high-temperature cuprate superconductors is the pseudogap state, which appears above the temperature at which superconductivity is destroyed. There remain fundamental questions regarding its nature and its relation to superconductivity. But to address these questions, we must first determine whether the pseudogap and superconducting states share a common property: particle-hole symmetry. We introduce a new technique to test particle-hole symmetry by using laser pulses to manipulate and measure the chemical potential on picosecond time scales. The results strongly suggest that the asymmetry in the density of states is inverted in the pseudogap state, implying a particle-hole asymmetric gap. Independent of interpretation, these results can test theoretical predictions of the density of states in cuprates.

20.
Nat Commun ; 7: 13143, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739428

RESUMO

Topological insulators host spin-polarized surface states born out of the energetic inversion of bulk bands driven by the spin-orbit interaction. Here we discover previously unidentified consequences of band-inversion on the surface electronic structure of the topological insulator Bi2Se3. By performing simultaneous spin, time, and angle-resolved photoemission spectroscopy, we map the spin-polarized unoccupied electronic structure and identify a surface resonance which is distinct from the topological surface state, yet shares a similar spin-orbital texture with opposite orientation. Its momentum dependence and spin texture imply an intimate connection with the topological surface state. Calculations show these two distinct states can emerge from trivial Rashba-like states that change topology through the spin-orbit-induced band inversion. This work thus provides a compelling view of the coevolution of surface states through a topological phase transition, enabled by the unique capability of directly measuring the spin-polarized unoccupied band structure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA