Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(31): 34910-34918, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32643367

RESUMO

Organic quinone molecules are attractive electrochemical energy storage devices because of their high abundance, multielectron reactions, and structural diversity compared with transition metal-oxide electrode materials. However, they have problems like poor cycle stability and low rate performance on account of the inherent low conductivity and high solubility in the electrolyte. Solving these two key problems at the same time can be challenging. Herein, we demonstrate that using a nitrogen-doped hierarchical porous carbon (NC) with mixed microporous/low-range mesoporous can greatly alleviate the shuttle effect caused by the dissolution of organic molecules in the electrolyte through physical binding and chemisorption, thereby improving the electrochemical performances. Lithium-ion batteries based on the anthraquinone (AQ) electrode exhibit dramatic capacity decay (5.7% capacity retention at 0.2 C after 1000 cycles) and poor rate performance (14.2 mA h g-1 at 2 C). However, the lithium-ion battery based on the NC@AQ cathode shows excellent cycle stability (60.5% capacity retention at 0.2 C after 1000 cycles, 82.8% capacity retention at 0.5 C after 1000 cycles), superior rate capability (152.9 mA h g-1 at 2 C), and outstanding energy efficiency (98% at 0.2 C). Our work offers a new approach to realize the next-generation organic batteries for long life and high rate performance.

2.
ACS Nano ; 13(6): 6906-6916, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184476

RESUMO

Transition metal sulfides are deemed as attractive anode materials for potassium-ion batteries (KIBs) due to their high theoretical capacities based on conversion and alloying reaction. However, the main challenges are the low electronic conductivity, huge volume expansion, and consequent formation of unstable solid electrolyte interphase (SEI) upon potassiation/depotassiation. Herein, zinc sulfide dendrites deeply nested in the tertiary hierarchical structure through a solvothermal-pyrolysis process are designed as an anode material for KIBs. The tertiary hierarchical structure is composed of the primary ultrafine ZnS nanorods, the secondary carbon nanosphere, and the tertiary carbon-encapsulated ZnS subunits nanosphere structure. The architectural design of this material provides a stable diffusion path and enhances effective conductivity from the interior to exterior for both K+ ions and electrons, buffers the volume expansion, and constructs a stable SEI during cycling. A stable specific capacity of 330 mAh g-1 is achieved after 100 cycles at the current density of 50 mA g-1 and 208 mAh g-1 at 500 mA g-1 over 300 cycles. Using density functional theory calculations, we discover the interactions between ZnS and carbon interface can effectively decrease the K+ ions diffusion barrier and therefore promote the reversibility of K+ ions storage.

3.
Adv Sci (Weinh) ; 5(10): 1800782, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30356990

RESUMO

Due to the abundant and low-cost K resources, the exploration of suitable materials for potassium-ion batteries (KIBs) is advancing as a promising alternative to lithium-ion batteries. However, the large-sized and sluggish-kinetic K ions cause poor battery behavior. This work reports a metallic octahedral CoSe2 threaded by N-doped carbon nanotubes as a flexible framework for a high-performance KIBs anode. The metallic property of CoSe2 together with the highly conductive N-doped carbon nanotubes greatly accelerates the electron transfer and improves the rate performance. The carbon nanotube framework serves as a backbone to inhibit the agglomeration, anchor the active materials, and stabilize the integral structure. Every octahedral CoSe2 particle arranges along the carbon nanotubes in sequence, and the zigzag void space can accommodate the volume expansion during cycling, therefore boosting the cycling stability. Density functional theory is also employed to study the K-ion intercalation/deintercalation process. This unique structure delivers a high capacity (253 mAh g-1 at 0.2 A g-1 over 100 cycles) and enhanced rate performance (173 mAh g-1 at 2.0 A g-1 over 600 cycles) as an advanced anode material for KIBs.

4.
Small ; 13(40)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28834268

RESUMO

The development of lithium-sulfur (Li-S) batteries is dogged by the rapid capacity decay arising from polysulfide dissolution and diffusion in organic electrolytes. To solve this critical issue, a praline-like flexible interlayer consisting of high-loading titanium oxide (TiO2 ) nanoparticles and relatively long carbon nanofibers is fabricated. TiO2 nanoparticles with a size gradient occupy both the external and internal of carbon fiber and serve as anchors that allow the chemical adsorption of polysulfides through a conductive nanoarchitecture. The porous conductive carbon backbone helps in the physical absorption of polysulfides and provides redox reaction sites to allow the polysulfides to be reused. More importantly, it offers enough mechanical strength to support a high load TiO2 nanoparticle (79 wt%) that maximizes their chemical role, and can accommodate the large volume changes. Significant enhancement in cycle stability and rate capability is achieved for a readily available sulfur/multi-walled carbon nanotube composite cathode simply by incorporating this hierarchically nanostructured interlayer. The design and synthesis of interlayers by in situ integration of metal oxides and carbon fibers via a simple route offers the potential to advance Li-S batteries for practical applications in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA