Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38077070

RESUMO

The excitatory neurons of the three cerebellar nuclei (eCN) form the primary output for the cerebellar circuit. The medial eCN (eCNm) were recently divided into molecularly defined subdomains in the adult, however how they are established during development is not known. We define molecular subdomains of the eCNm using scRNA-seq and spatial expression analysis and show they evolve during embryogenesis to resemble the adult. Furthermore, the eCNm is transcriptionally divergent from the rest of the eCN by E14.5. We previously showed that loss of the homeobox genes En1 and En2 leads to death of a subset of embryonic eCNm. We demonstrate that mutation of En1/2 in embryonic eCNm results in cell death of specific posterior eCNm molecular subdomains and loss of TBR2 (EOMES) expression in an anterior subdomain, as well as reduced synaptic gene expression. We further reveal a similar function for EN1/2 in mediating TBR2 expression, neuron differentiation and survival in the two other cerebellar excitatory neuron types. Thus, our work defines embryonic eCNm molecular diversity and reveals conserved roles for EN1/2 in the cerebellar excitatory neuron lineage.

2.
iScience ; 26(10): 107831, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37822508

RESUMO

The major cause of treatment failure and mortality among medulloblastoma patients is metastasis intracranially or along the spinal cord. The molecular mechanisms driving tumor metastasis in Sonic hedgehog-driven medulloblastoma (SHH-MB) patients, however, remain largely unknown. In this study we define a tumor suppressive role of KMT2D (MLL2), a gene frequently mutated in the most metastatic ß-subtype. Strikingly, genetic mouse models of SHH-MB demonstrate that heterozygous loss of Kmt2d in conjunction with activation of the SHH pathway causes highly penetrant disease with decreased survival, increased hindbrain invasion and spinal cord metastasis. Loss of Kmt2d attenuates neural differentiation and shifts the transcriptional/chromatin landscape of primary and metastatic tumors toward a decrease in differentiation genes and tumor suppressors and an increase in genes/pathways implicated in advanced stage cancer and metastasis (TGFß, Notch, Atoh1, Sox2, and Myc). Thus, secondary heterozygous KMT2D mutations likely have prognostic value for identifying SHH-MB patients prone to develop metastasis.

3.
Sci Adv ; 7(50): eabj1598, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34878841

RESUMO

To understand repair processes, it is critical to identify the molecular foundations underlying progenitor diversity and plasticity. Upon injury to the neonatal cerebellum, a normally gliogenic nestin-expressing progenitor (NEP) in the Bergmann glia layer (BgL) undergoes adaptive reprograming to restore granule cell production. However, the cellular states and genes regulating the NEP fate switch are unknown. Using single-cell RNA sequencing and fate mapping, we defined molecular subtypes of NEPs and their lineages under homeostasis and repair. NEPs contain two major subtypes: Hopx+ astrogliogenic and Ascl1+ neurogenic NEPs that are further subdivided based on their location, lineage, and differentiation status. Upon injury, an Ascl1+ transitory cellular state arises from Hopx+ BgL-NEPs. Furthermore, mutational analysis revealed that induction of Ascl1 is required for adaptive reprogramming by orchestrating a glial-to-neural switch in vivo following injury. Thus, we provide molecular and cellular insights into context-dependent progenitor plasticity and repair mechanisms in the brain.

4.
Oncogene ; 40(2): 396-407, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33159168

RESUMO

The immune microenvironment of tumors can play a critical role in promoting or inhibiting tumor progression depending on the context. We present evidence that tumor-associated macrophages/microglia (TAMs) can promote tumor progression in the sonic hedgehog subgroup of medulloblastoma (SHH-MB). By combining longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) and immune profiling of a sporadic mouse model of SHH-MB, we found the density of TAMs is higher in the ~50% of tumors that progress to lethal disease. Furthermore, reducing regulatory T cells or eliminating B and T cells in Rag1 mutants does not alter SHH-MB tumor progression. As TAMs are a dominant immune component in tumors and are normally dependent on colony-stimulating factor 1 receptor (CSF1R), we treated mice with a CSF1R inhibitor, PLX5622. Significantly, PLX5622 reduces a subset of TAMs, prolongs mouse survival, and reduces the volume of most tumors within 4 weeks of treatment. Moreover, concomitant with a reduction in TAMs the percentage of infiltrating cytotoxic T cells is increased, indicating a change in the tumor environment. Our studies in an immunocompetent preclinical mouse model demonstrate TAMs can have a functional role in promoting SHH-MB progression. Thus, CSF1R inhibition could have therapeutic potential for a subset of SHH-MB patients.


Assuntos
Neoplasias Cerebelares/prevenção & controle , Modelos Animais de Doenças , Proteínas Hedgehog/fisiologia , Meduloblastoma/prevenção & controle , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Macrófagos Associados a Tumor/imunologia , Animais , Apoptose , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Proliferação de Células , Neoplasias Cerebelares/etiologia , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Feminino , Humanos , Masculino , Meduloblastoma/etiologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prognóstico , Células Tumorais Cultivadas , Microambiente Tumoral
5.
Elife ; 82019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31742552

RESUMO

For neural systems to function effectively, the numbers of each cell type must be proportioned properly during development. We found that conditional knockout of the mouse homeobox genes En1 and En2 in the excitatory cerebellar nuclei neurons (eCN) leads to reduced postnatal growth of the cerebellar cortex. A subset of medial and intermediate eCN are lost in the mutants, with an associated cell non-autonomous loss of their presynaptic partner Purkinje cells by birth leading to proportional scaling down of neuron production in the postnatal cerebellar cortex. Genetic killing of embryonic eCN throughout the cerebellum also leads to loss of Purkinje cells and reduced postnatal growth but throughout the cerebellar cortex. Thus, the eCN play a key role in scaling the size of the cerebellum by influencing the survival of their Purkinje cell partners, which in turn regulate production of granule cells and interneurons via the amount of sonic hedgehog secreted.


Assuntos
Proliferação de Células , Córtex Cerebelar/crescimento & desenvolvimento , Núcleos Cerebelares/citologia , Células de Purkinje/fisiologia , Animais , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/genética , Camundongos , Proteínas do Tecido Nervoso/deficiência
6.
Proc Natl Acad Sci U S A ; 115(13): 3392-3397, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29531057

RESUMO

The main cell of origin of the Sonic hedgehog (SHH) subgroup of medulloblastoma (MB) is granule cell precursors (GCPs), a SHH-dependent transient amplifying population in the developing cerebellum. SHH-MBs can be further subdivided based on molecular and clinical parameters, as well as location because SHH-MBs occur preferentially in the lateral cerebellum (hemispheres). Our analysis of adult patient data suggests that tumors with Smoothened (SMO) mutations form more specifically in the hemispheres than those with Patched 1 (PTCH1) mutations. Using sporadic mouse models of SHH-MB with the two mutations commonly seen in adult MB, constitutive activation of Smo (SmoM2) or loss-of-Ptch1, we found that regardless of timing of induction or type of mutation, tumors developed primarily in the hemispheres, with SmoM2-mutants indeed showing a stronger specificity. We further uncovered that GCPs in the hemispheres are more susceptible to high-level SHH signaling compared with GCPs in the medial cerebellum (vermis), as more SmoM2 or Ptch1-mutant hemisphere cells remain undifferentiated and show increased tumorigenicity when transplanted. Finally, we identified location-specific GCP gene-expression profiles, and found that deletion of the genes most highly expressed in the hemispheres (Nr2f2) or vermis (Engrailed1) showed opposing effects on GCP differentiation. Our studies thus provide insights into intrinsic differences within GCPs that impact on SHH-MB progression.


Assuntos
Neoplasias Cerebelares/patologia , Cerebelo/patologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/patologia , Receptor Patched-1/metabolismo , Receptor Smoothened/metabolismo , Adulto , Animais , Diferenciação Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/metabolismo , Cerebelo/metabolismo , Proteínas Hedgehog/genética , Humanos , Lactente , Meduloblastoma/genética , Meduloblastoma/metabolismo , Camundongos , Receptor Patched-1/genética , Transdução de Sinais , Receptor Smoothened/genética , Transcriptoma
7.
Nat Neurosci ; 20(10): 1361-1370, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28805814

RESUMO

Regeneration of several organs involves adaptive reprogramming of progenitors, but the intrinsic capacity of the developing brain to replenish lost cells remains largely unknown. Here we found that the developing cerebellum has unappreciated progenitor plasticity, since it undergoes near full growth and functional recovery following acute depletion of granule cells, the most plentiful neuron population in the brain. We demonstrate that following postnatal ablation of granule cell progenitors, Nestin-expressing progenitors, specified during mid-embryogenesis to produce astroglia and interneurons, switch their fate and generate granule neurons in mice. Moreover, Hedgehog signaling in two Nestin-expressing progenitor populations is crucial not only for the compensatory replenishment of granule neurons but also for scaling interneuron and astrocyte numbers. Thus, we provide insights into the mechanisms underlying robustness of circuit formation in the cerebellum and speculate that adaptive reprogramming of progenitors in other brain regions plays a greater role than appreciated in developmental regeneration.


Assuntos
Cerebelo/fisiologia , Nestina/fisiologia , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Animais , Animais Recém-Nascidos , Astrócitos/fisiologia , Cerebelo/efeitos da radiação , Feminino , Proteínas Hedgehog/fisiologia , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Nestina/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/efeitos da radiação
8.
Cell Rep ; 2(2): 386-96, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22884371

RESUMO

Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination), which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26(MASTR)) was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26(MASTR) mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial) and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.


Assuntos
Alelos , Transtornos Cromossômicos/genética , Engenharia Genética/métodos , Mutação , Recombinação Genética , Animais , Análise Mutacional de DNA/métodos , Camundongos , Camundongos Transgênicos , Mosaicismo
9.
Dev Biol ; 370(1): 110-24, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22841643

RESUMO

Anterior-posterior (AP) limb patterning is directed by sonic hedgehog (SHH) signaling from the posteriorly located zone of polarizing activity (ZPA). GLI3 and GLI2 are the transcriptional mediators generally utilized in SHH signaling, and each can function as an activator (A) and repressor (R). Although GLI3R has been suggested to be the primary effector of SHH signaling during limb AP patterning, a role for GLI3A or GLI2 has not been fully ruled out, nor has it been determined whether Gli3 plays distinct roles in limb development at different stages. By conditionally removing Gli3 in the limb at multiple different time points, we uncovered four Gli3-mediated functions in limb development that occur at distinct but partially over-lapping time windows: AP patterning of the proximal limb, AP patterning of the distal limb, regulation of digit number and bone differentiation. Furthermore, by removing Gli2 in Gli3 temporal conditional knock-outs, we uncovered an essential role for Gli2 in providing the remaining posterior limb patterning seen in Gli3 single mutants. To test whether GLIAs or GLIRs regulate different aspects of AP limb patterning and/or digit number, we utilized a knock-in allele in which GLI1, which functions solely as an activator, is expressed in place of the bifunctional GLI2 protein. Interestingly, we found that GLIAs contribute to AP patterning specifically in the posterior limb, whereas GLIRs predominantly regulate anterior patterning and digit number. Since GLI3 is a more effective repressor, our results explain why GLI3 is required only for anterior limb patterning and why GLI2 can compensate for GLI3A in posterior limb patterning. Taken together, our data suggest that establishment of a complete range of AP positional identities in the limb requires integration of the spatial distribution, timing, and dosage of GLI2 and GLI3 activators and repressors.


Assuntos
Padronização Corporal/fisiologia , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Transdução de Sinais/fisiologia , Animais , Western Blotting , Primers do DNA/genética , Extremidades/anatomia & histologia , Proteínas Hedgehog/metabolismo , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Transdução de Sinais/genética , Tamoxifeno , Proteína Gli2 com Dedos de Zinco , Proteína Gli3 com Dedos de Zinco , beta-Galactosidase/metabolismo
10.
J Neurosci ; 28(47): 12150-62, 2008 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-19020009

RESUMO

Underlying the seemingly uniform cellular composition of the adult mammalian cerebellum (Cb) are striking parasagittal stripes of gene expression along the medial-lateral (ML) axis that are organized with respect to the lobules that divide the Cb along the anterior-posterior (AP) axis. Although there is a clear correlation between the organization of gene expression stripes and Cb activity patterns, little is known about the genetic pathways that determine the intrinsic stripe molecular code. Here we establish that ML molecular code patterning is highly dependent on two homeobox transcription factors, Engrailed1 (En1) and En2, both of which are also required for patterning the lobules. Gene expression analysis of an allelic series of En1/2 mutant mice that have an intact Purkinje cell layer revealed severe patterning defects using three known components of the ML molecular code and a new marker of Hsp25 negative stripes (Neurofilament heavy chain, Nfh). Importantly, the complementary expression of ZebrinII/PhospholipaseC beta4 and Hsp25/Nfh changes in unison in each mutant. Furthermore, each En gene has unique as well as overlapping functions in patterning the ML molecular code and each En protein has dominant functions in different AP domains (subsets of lobules). Remarkably, in En1/2 mutants with almost normal foliation, ML molecular code patterning is severely disrupted. Thus, independent mechanisms that use En1/2 must pattern foliation and spatial gene expression separately. Our studies reveal that En1/2 are fundamental components of the genetic pathways that pattern the two intersecting coordinate systems of the Cb, morphological divisions and the molecular code.


Assuntos
Padronização Corporal/genética , Cerebelo/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células de Purkinje/fisiologia , Animais , Animais Recém-Nascidos , Mapeamento Encefálico , Cerebelo/crescimento & desenvolvimento , Dosagem de Genes , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Homeodomínio/genética , Masculino , Camundongos , Camundongos Knockout , Chaperonas Moleculares , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos , Fosfolipase C beta/genética , Fosfolipase C beta/metabolismo
11.
Development ; 134(12): 2325-35, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17537797

RESUMO

The genetic pathways that partition the developing nervous system into functional systems are largely unknown. The engrailed (En) homeobox transcription factors are candidate regulators of this process in the dorsal midbrain (tectum) and anterior hindbrain (cerebellum). En1 mutants lack most of the tectum and cerebellum and die at birth, whereas En2 mutants are viable with a smaller cerebellum and foliation defects. Our previous studies indicated that the difference in phenotypes is due to the earlier expression of En1 as compared with En2, rather than differences in protein function, since knock-in mice expressing En2 in place of En1 have a normal brain. Here, we uncovered a wider spectrum of functions for the En genes by generating a series of En mutant mice. First, using a conditional allele we demonstrate that En1 is required for cerebellum development only before embryonic day 9, but plays a sustained role in forming the tectum. Second, by removing the endogenous En2 gene in the background of En1 knock-in alleles, we show that Drosophila en is not sufficient to sustain midbrain and cerebellum development in the absence of En2, whereas En2 is more potent than En1 in cerebellum development. Third, based on a differential sensitivity to the dose of En1/2, our studies reveal a genetic subdivision of the tectum into its two functional systems and the medial cerebellum into four regions that have distinct circuitry and molecular coding. Our study suggests that an ;engrailed code' is integral to partitioning the tectum and cerebellum into functional domains.


Assuntos
Cerebelo/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Mesencéfalo/embriologia , Proteínas do Tecido Nervoso/genética , Animais , Dosagem de Genes , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Camundongos Mutantes , Mutação , beta-Galactosidase/metabolismo
12.
Genes Dev ; 20(2): 185-98, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16384934

RESUMO

Two of the four human FGF8 splice isoforms, FGF8a and FGF8b, are expressed in the mid-hindbrain region during development. Although the only difference between these isoforms is the presence of an additional 11 amino acids at the N terminus of FGF8b, these isoforms possess remarkably different abilities to pattern the midbrain and anterior hindbrain. To reveal the structural basis by which alternative splicing modulates the organizing activity of FGF8, we solved the crystal structure of FGF8b in complex with the "c" splice isoform of FGF receptor 2 (FGFR2c). Using surface plasmon resonance (SPR), we also characterized the receptor-binding specificity of FGF8a and FGF8b, the "b" isoform of FGF17 (FGF17b), and FGF18. The FGF8b-FGFR2c structure shows that alternative splicing permits a single additional contact between phenylalanine 32 (F32) of FGF8b and a hydrophobic groove within Ig domain 3 of the receptor that is also present in FGFR1c, FGFR3c, and FGFR4. Consistent with the structure, mutation of F32 to alanine reduces the affinity of FGF8b toward all these receptors to levels characteristic of FGF8a. More importantly, analysis of the mid-hindbrain patterning ability of the FGF8b(F32A) mutant in chick embryos and murine midbrain explants shows that this mutation functionally converts FGF8b to FGF8a. Moreover, our data suggest that the intermediate receptor-binding affinities of FGF17b and FGF18, relative to FGF8a and FGF8b, also account for the distinct patterning abilities of these two ligands. We also show that the mode of FGF8 receptor-binding specificity is distinct from that of other FGFs and provide the first biochemical evidence for a physiological FGF8b-FGFR1c interaction during mid-hindbrain development. Consistent with the indispensable role of FGF8 in embryonic development, we show that the FGF8 mode of receptor binding appeared as early as in nematodes and has been preserved throughout evolution.


Assuntos
Processamento Alternativo , Encéfalo/metabolismo , Fator 8 de Crescimento de Fibroblasto/metabolismo , Sequência de Aminoácidos , Animais , Padronização Corporal , Encéfalo/embriologia , Embrião de Galinha , Cristalografia por Raios X , Dimerização , Fator 8 de Crescimento de Fibroblasto/química , Humanos , Mesencéfalo/metabolismo , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Rombencéfalo/embriologia , Alinhamento de Sequência , Relação Estrutura-Atividade , Ressonância de Plasmônio de Superfície
13.
Development ; 132(8): 1971-81, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15790971

RESUMO

The mouse homeobox gene Gbx2 is first expressed throughout the posterior region of the embryo during gastrulation, and becomes restricted to rhombomeres 1-3 (r1-3) by embryonic day 8.5 (E8.5). Previous studies have shown that r1-3 do not develop in Gbx2 mutants and that there is an early caudal expansion of the midbrain gene Otx2 to the anterior border of r4. Furthermore, expression of Wnt1 and Fgf8, two crucial components of the isthmic organizer, is no longer segregated to adjacent domains in Gbx2 mutants. In this study, we extend the phenotypic analysis of Gbx2 mutants by showing that Gbx2 is not only required for development of r1-3, but also for normal gene expression in r4-6. To determine whether Gbx2 can alter hindbrain development, we generated Hoxb1-Gbx2 (HG) transgenic mice in which Gbx2 is ectopically expressed in r4. We show that Gbx2 is not sufficient to induce r1-3 development in r4. To test whether an Otx2/Gbx2 interface can induce r1-3 development, we introduced the HG transgene onto a Gbx2-null mutant background and recreated a new Otx2/Gbx2 border in the anterior hindbrain. Development of r3, but not r1 and r2, is rescued in Gbx2-/-; HG embryos. In addition, the normal spatial relationship of Wnt1 and Fgf8 is established at the new Otx2/Gbx2 border, demonstrating that an interaction between Otx2 and Gbx2 is sufficient to produce the normal pattern of Wnt1 and Fgf8 expression. However, the expression domains of Fgf8 and Spry1, a downstream target of Fgf8, are greatly reduced in mid/hindbrain junction area of Gbx2-/-; HG embryos and the posterior midbrain is truncated because of abnormal cell death. Interestingly, we show that increased cell death and a partial loss of the midbrain are associated with increased expression of Fgf8 and Spry1 in Gbx2 conditional mutants that lack Gbx2 in r1 after E9.0. These results together suggest that cell survival in the posterior midbrain is positively or negatively regulated by Fgf8, depending on Fgf8 expression level. Our studies provide new insights into the regulatory interactions that maintain isthmic organizer gene expression and the consequences of altered levels of organizer gene expression on cell survival.


Assuntos
Sistema Nervoso Central/embriologia , Indução Embrionária , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Organizadores Embrionários/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Apoptose/fisiologia , Bromodesoxiuridina , Fator 8 de Crescimento de Fibroblasto , Fatores de Crescimento de Fibroblastos/metabolismo , Técnicas Histológicas , Proteínas de Homeodomínio/genética , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Organizadores Embrionários/embriologia , Fosfoproteínas/metabolismo , Transgenes/genética , Proteínas Wnt , Proteína Wnt1
14.
Development ; 130(25): 6175-85, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14602678

RESUMO

Early patterning of the vertebrate midbrain and cerebellum is regulated by a mid/hindbrain organizer that produces three fibroblast growth factors (FGF8, FGF17 and FGF18). The mechanism by which each FGF contributes to patterning the midbrain, and induces a cerebellum in rhombomere 1 (r1) is not clear. We and others have found that FGF8b can transform the midbrain into a cerebellum fate, whereas FGF8a can promote midbrain development. In this study we used a chick electroporation assay and in vitro mouse brain explant experiments to compare the activity of FGF17b and FGF18 to FGF8a and FGF8b. First, FGF8b is the only protein that can induce the r1 gene Gbx2 and strongly activate the pathway inhibitors Spry1/2, as well as repress the midbrain gene Otx2. Consistent with previous studies that indicated high level FGF signaling is required to induce these gene expression changes, electroporation of activated FGFRs produce similar gene expression changes to FGF8b. Second, FGF8b extends the organizer along the junction between the induced Gbx2 domain and the remaining Otx2 region in the midbrain, correlating with cerebellum development. By contrast, FGF17b and FGF18 mimic FGF8a by causing expansion of the midbrain and upregulating midbrain gene expression. This result is consistent with Fgf17 and Fgf18 being expressed in the midbrain and not just in r1 as Fgf8 is. Third, analysis of gene expression in mouse brain explants with beads soaked in FGF8b or FGF17b showed that the distinct activities of FGF17b and FGF8b are not due to differences in the amount of FGF17b protein produced in vivo. Finally, brain explants were used to define a positive feedback loop involving FGF8b mediated upregulation of Fgf18, and two negative feedback loops that include repression of Fgfr2/3 and direct induction of Spry1/2. As Fgf17 and Fgf18 are co-expressed with Fgf8 in many tissues, our studies have broad implications for how these FGFs differentially control development.


Assuntos
Cerebelo/embriologia , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica no Desenvolvimento , Mesencéfalo/embriologia , Proteínas Tirosina Quinases , Receptores de Fatores de Crescimento de Fibroblastos/genética , Animais , Padronização Corporal/genética , Embrião de Galinha , Galinhas , Desenvolvimento Embrionário e Fetal/genética , Fator 8 de Crescimento de Fibroblasto , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Camundongos , Técnicas de Cultura de Órgãos , Receptores Proteína Tirosina Quinases/genética , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos
15.
Neuron ; 36(1): 31-43, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12367504

RESUMO

We examined whether Gbx2 is required after embryonic day 9 (E9) to repress Otx2 in the cerebellar anlage and position the midbrain/hindbrain organizer. In contrast to Gbx2 null mutants, mice lacking Gbx2 in rhombomere 1 (r1) after E9 (Gbx2-CKO) are viable and develop a cerebellum. A Gbx2-independent pathway can repress Otx2 in r1 after E9. Mid/hindbrain organizer gene expression, however, continues to be dependent on Gbx2. We found that Fgf8 expression normally correlates with the isthmus where cells undergo low proliferation and that in Gbx2-CKO mutants this domain is expanded. We propose that Fgf8 permits lateral cerebellar development through repression of Otx2 and also suppresses medial cerebellar growth in Gbx2-CKO embryos. Our work has uncovered distinct requirements for Gbx2 during cerebellum formation and provided a model for how a transcription factor can play multiple roles during development.


Assuntos
Cerebelo/anormalidades , Proteínas de Homeodomínio/metabolismo , Mesencéfalo/embriologia , Rombencéfalo/embriologia , Proteínas de Peixe-Zebra , Animais , Padronização Corporal/genética , Diferenciação Celular/fisiologia , Cerebelo/citologia , Cerebelo/metabolismo , Feminino , Feto , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/genética , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição Otx , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteínas Wnt
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA