Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 15(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38068802

RESUMO

Adequate nutrient supply is crucial for the proper development of the embryo. Although nutrient supply is determined by maternal diet, the gut microbiota also influences nutrient availability. While currently there is no cure for neural tube defects (NTDs), their prevention is largely amenable to maternal folic acid and inositol supplementation. The gut microbiota also contributes to the production of these nutrients, which are absorbed by the host, but its role in this context remains largely unexplored. In this study, we performed a functional and morphological analysis of the intestinal tract of loop-tail mice (Vangl2 mutants), a mouse model of folate/inositol-resistant NTDs. In addition, we investigated the changes in gut microbiota using 16S rRNA gene sequencing regarding (1) the host genotype; (2) the sample source for metagenomics analysis; (3) the pregnancy status in the gestational window of neural tube closure; (4) folic acid and (5) D-chiro-inositol supplementation. We observed that Vangl2+/Lp mice showed no apparent changes in gastrointestinal transit time or fecal output, yet exhibited increased intestinal length and cecal weight and gut dysbiosis. Moreover, our results showed that the mice supplemented with folic acid and D-chiro-inositol had significant changes in their microbiota composition, which are changes that could have implications for nutrient absorption.


Assuntos
Microbiota , Defeitos do Tubo Neural , Feminino , Gravidez , Camundongos , Animais , RNA Ribossômico 16S/genética , Defeitos do Tubo Neural/prevenção & controle , Ácido Fólico/farmacologia , Suplementos Nutricionais , Inositol , Modelos Animais de Doenças
2.
Dis Model Mech ; 16(8)2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589570

RESUMO

Neural tube defects (NTDs) are the second most common cause of congenital malformations and are often studied in animal models. Loop-tail (Lp) mice carry a mutation in the Vangl2 gene, a member of the Wnt-planar cell polarity pathway. In Vangl2+/Lp embryos, the mutation induces a failure in the completion of caudal neural tube closure, but only a small percentage of embryos develop open spina bifida. Here, we show that the majority of Vangl2+/Lp embryos developed caudal closed NTDs and presented cellular aggregates that may facilitate the sealing of these defects. The cellular aggregates expressed neural crest cell markers and, using these as a readout, we describe a systematic method to assess the severity of the neural tube dorsal fusion failure. We observed that this defect worsened in combination with other NTD mutants, Daam1 and Grhl3. Besides, we found that in Vangl2+/Lp embryos, these NTDs were resistant to maternal folic acid and inositol supplementation. Loop-tail mice provide a useful model for research on the molecular interactions involved in the development of open and closed NTDs and for the design of prevention strategies for these diseases.


Assuntos
Defeitos do Tubo Neural , Cauda , Animais , Camundongos , Modelos Animais de Doenças , Ácido Fólico/farmacologia , Mutação/genética , Defeitos do Tubo Neural/genética , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas dos Microfilamentos , Proteínas rho de Ligação ao GTP
3.
J Exp Zool B Mol Dev Evol ; 340(3): 231-244, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35535962

RESUMO

In species with seasonal breeding, male specimens undergo substantial testicular regression during the nonbreeding period of the year. However, the molecular mechanisms that control this biological process are largely unknown. Here, we report a transcriptomic analysis on the Iberian mole, Talpa occidentalis, in which the desquamation of live, nonapoptotic germ cells is the major cellular event responsible for testis regression. By comparing testes at different reproductive states (active, regressing, and inactive), we demonstrate that the molecular pathways controlling the cell adhesion function in the seminiferous epithelium, such as the MAPK, ERK, and TGF-ß signaling, are altered during the regression process. In addition, inactive testes display a global upregulation of genes associated with immune response, indicating a selective loss of the "immune privilege" that normally operates in sexually active testes. Interspecies comparative analyses using analogous data from the Mediterranean pine vole, a rodent species where testis regression is controlled by halting meiosis entry, revealed a common gene expression signature in the regressed testes of these two evolutionary distant species. Our study advances in the knowledge of the molecular mechanisms associated to gonadal seasonal breeding, highlighting the existence of a conserved transcriptional program of testis involution across mammalian clades.


Assuntos
Testículo , Transcriptoma , Masculino , Animais , Testículo/metabolismo , Adesão Celular , Mamíferos , Imunidade , Estações do Ano
4.
Animals (Basel) ; 11(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205873

RESUMO

Most mammalian species of the temperate zones of the Earth reproduce seasonally, existing a non-breeding period in which the gonads of both sexes undergo functional regression. It is widely accepted that photoperiod is the principal environmental cue controlling these seasonal changes, although several exceptions have been described in other mammalian species in which breeding depends on cues such as food or water availability. We studied the circannual reproductive cycle in males of the Mediterranean pine vole, Microtus duodecimcostatus, in the Southeastern Iberian Peninsula. Morphological, hormonal, functional, molecular and transcriptomic analyses were performed. As reported for populations of other species from the same geographic area, male voles captured in wastelands underwent seasonal testis regression in summer whereas, surprisingly, those living either in close poplar plantations or in our animal house reproduced throughout the year, showing that it is the microenvironment of a particular vole subpopulation what determines its reproductive status and that these animals are pure opportunistic, photoperiod-independent breeders. In addition, we show that several molecular pathways, including MAPK, are deregulated and that the testicular "immune privilege" is lost in the inactive testes, providing novel mechanisms linking seasonal testosterone reduction and testis regression.

5.
Animals (Basel) ; 11(2)2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33498171

RESUMO

In most mammals with seasonal reproduction, males undergo testis regression during the non-breeding period. We performed a morphological, hormonal, functional, and molecular study of the testes of sexually inactive males of two species of murine rodents, the wood mouse, Apodemus sylvaticus, and the Algerian mouse, Mus spretus, in syntopic populations of southern Iberian peninsula. Both species reproduce during most of the year, but wood mice stop breeding in the summer whereas Algerian mice do it in winter. Sexually inactive males of A. sylvaticus show complete testis regression with reduced levels of serum testosterone and abnormal distribution of cell-adhesion molecules. Contrarily, inactive males of M. spretus maintain almost normal spermotogenesis despite a significant reduction of androgenic function. The lack of an evident explanation for the divergent seasonal breeding patterns found in southern populations of A. sylvaticus and M. spretus, compared with northern ones, implies that very subtle species/population-specific features and/or non-conspicuous environmental cues probably operate to determine their seasonal breeding pattern. These results also support the notion that multiple models of circannual testis variation are possible for different populations of the same species, showing that the mechanisms controlling seasonal reproduction are in fact very plastic and fast evolving.

6.
PLoS One ; 13(10): e0204851, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30286149

RESUMO

Testes of seasonally breeding species experience a severe functional regression before the non-breeding period, which implies a substantial mass reduction due to massive germ-cell depletion. Two alternative mechanisms of seasonal germ-cell depletion have been described in mammals, apoptosis and desquamation (sloughing), but their prevalence has not been determined yet due to reduced number of species studied. We performed a morphological, hormonal, and molecular study of the mechanism of seasonal testicular regression in males of the Egyptian long eared-hedgehog (Hemiechinus auritus). Our results show that live, non-apoptotic, germ cells are massively depleted by desquamation during the testis regression process. This is concomitant with both decreased levels of serum testosterone and irregular distribution of the cell-adhesion molecules in the seminiferous epithelium. The inactive testes maintain some meiotic activity as meiosis onset is not halted and spermatocytes die by apoptosis at the pachytene stage. Our data support the notion that apoptosis is not the major testis regression effector in mammals. Instead, desquamation appears to be a common mechanism in this class.


Assuntos
Ouriços/fisiologia , Testículo/fisiologia , Animais , Apoptose , Cruzamento , Moléculas de Adesão Celular/metabolismo , Egito , Ouriços/sangue , Masculino , Estações do Ano , Testículo/citologia , Testosterona/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA