RESUMO
Recent studies in adipose tissue, pancreas, muscle, and macrophages suggest that MAP4K4, a serine/threonine protein kinase may be a viable target for antidiabetic drugs. As part of the evaluation of MAP4K4 as a novel antidiabetic target, a tool compound, 16 (PF-6260933) and a lead 17 possessing excellent kinome selectivity and suitable properties were delivered to establish proof of concept in vivo. The medicinal chemistry effort that led to the discovery of these lead compounds is described herein together with in vivo pharmacokinetic properties and activity in a model of insulin resistance.
RESUMO
DGAT-1 is an enzyme that catalyzes the final step in triglyceride synthesis. mRNA knockout experiments in rodent models suggest that inhibitors of this enzyme could be of value in the treatment of obesity and type II diabetes. The carboxylic acid-based DGAT-1 inhibitor 1 was advanced to clinical trials for the treatment of type 2 diabetes, despite of the low passive permeability of 1. Because of questions relating to the potential attenuation of distribution and efficacy of a poorly permeable agent, efforts were initiated to identify compounds with improved permeability. Replacement of the acid moiety in 1 with an oxadiazole led to the discovery of 52, which possesses substantially improved passive permeability. The resulting pharmacodynamic profile of this neutral DGAT-1 inhibitor was found to be similar to 1 at comparable plasma exposures.
Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/química , Oxazepinas/química , Administração Oral , Animais , Diacilglicerol O-Aciltransferase/metabolismo , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Obesidade/tratamento farmacológico , Oxidiazóis/química , Oxazepinas/farmacocinética , Oxazepinas/uso terapêutico , Ligação Proteica , Ratos , Relação Estrutura-AtividadeRESUMO
Alterations in fat metabolism, in particular elevated plasma concentrations of free fatty acids and triglycerides (TG), have been implicated in the pathogenesis of Type 2 diabetes, obesity, and cardiovascular disease. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1), a member of the large family of membrane-bound O-acyltransferases, catalyzes the final step in triacylglycerol formation. In the intestine, DGAT1 is one of the acyltransferases responsible for the reesterficiation of dietary TG. Following a single dose of a selective pharmacological inhibitor of DGAT1, PF-04620110, a dose-dependent inhibition of TG and vitamin A absorption postprandially was demonstrated in rodents and human subjects. In C57/BL6J mice, acute DGAT1 inhibition alters the temporal and spatial pattern of dietary lipid absorption. To understand the impact of DGAT1 inhibition on enterocyte lipid metabolism, lipomic profiling was performed in rat intestine and plasma as well as human plasma. DGAT1 inhibition causes an enrichment of polyunsaturated fatty acids within the TG class of lipids. This pharmacological intervention gives us insight as to the role of DGAT1 in human dietary lipid absorption.
Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Absorção Intestinal/efeitos dos fármacos , Oxazepinas/farmacologia , Adolescente , Adulto , Animais , Estudos de Casos e Controles , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Gorduras na Dieta/sangue , Gorduras na Dieta/metabolismo , Relação Dose-Resposta a Droga , Enterócitos/metabolismo , Inibidores Enzimáticos/farmacocinética , Ácidos Graxos Insaturados/sangue , Ácidos Graxos Insaturados/metabolismo , Feminino , Humanos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Oxazepinas/farmacocinética , Período Pós-Prandial , Ratos , Ratos Sprague-Dawley , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Vitamina A/metabolismoRESUMO
A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg.
Assuntos
Diacilglicerol O-Aciltransferase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Oxazepinas/química , Oxazepinas/farmacologia , Pirimidinas/química , Pirimidinas/farmacologia , Animais , Diacilglicerol O-Aciltransferase/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Humanos , Camundongos , Modelos Moleculares , Oxazepinas/síntese química , Pirimidinas/síntese química , Triglicerídeos/metabolismoRESUMO
WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT: This study provides antimuscarinic agents for overactive bladder (OAB) display variable association with side effects mediated by the central nervous system (CNS), which may be of particular concern in the elderly. Adverse effects on CNS functioning are related to muscarinic receptor subtype selectivity and the ability of the agent to cross the blood-brain barrier, where P-gp plays a role in limiting permeability. WHAT THIS STUDY ADDS: This study provides a parallel investigation of CNS penetration of antimuscarinic OAB agents in vivo and assessment of physical properties and permeability in cell monolayers in vitro. It adds further understanding of the roles of passive transcellular permeability and P-gp in determining CNS penetration of antimuscarinic OAB agents. It also enables a comparison of CNS side-effect profiles of OAB agents with preclinical CNS penetration data. AIMS: To assess and compare the mechanisms of central nervous system (CNS) penetration of antimuscarinic overactive bladder (OAB) agents. METHODS: Physical properties were computed or compiled from the literature. Rats were administered 5-hydroxymethyl tolterodine (HMT), darifenacin, oxybutynin, solifenacin, tolterodine or trospium subcutaneously. At 1 h postdose, plasma, brain and cerebrospinal fluid (CSF) concentrations were determined using LC-MS/MS assays. Brain and plasma protein binding were determined in vitro. Permeability in the presence and absence of the efflux transporter P-glycoprotein (P-gp) was assessed in RRCK and MDCK-MDR1 transwell assays. RESULTS: Oxybutynin displayed extensive CNS penetration, with brain:plasma ratios (B:P), unbound brain:unbound plasma ratios (Kp,free) and CSF:free plasma ratios each >1. Tolterodine (B:P = 2.95, Kp,free = 0.23 and CSF:free plasma = 0.16) and solifenacin (B:P = 3.04, Kp,free = 0.28 and CSF:free plasma = 1.41) showed significant CNS penetration but with some restriction from CNS as indicated by Kp,free values significantly <1. 5-HMT, darifenacin and trospium displayed much lower B:P (0.03-0.16), Kp,free (0.01-0.04) and CSF:free plasma (0.004-0.06), consistent with poor CNS penetration. Permeability in RRCK cells was low for trospium (0.63 × 10(-6) cm s(-1) ), moderate for 5-HMT (11.7 × 10(-6) cm s(-1) ) and high for darifenacin, solifenacin, tolterodine and oxybutynin (21.5-38.2 × 10(-6) cm s(-1) ). In MDCK-MDR1 cells 5-HMT, darifenacin and trospium, were P-gp substrates, whereas oxybutynin, solifenacin and tolterodine were not P-gp substrates. CONCLUSIONS: Brain penetration was low for antimuscarinics that are P-gp substrates (5-HMT, darifenacin and trospium), and significant for those that are not P-gp substrates (oxybutynin, solifenacin and tolterodine). CNS adverse events reported in randomized controlled clinical trials show general alignment with the preclinical data described in this study.
Assuntos
Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Antagonistas Muscarínicos/farmacocinética , Bexiga Urinária Hiperativa/tratamento farmacológico , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Animais , Compostos Benzidrílicos/farmacocinética , Benzofuranos/farmacocinética , Linhagem Celular , Cromatografia Líquida de Alta Pressão , Cresóis/farmacocinética , Humanos , Masculino , Ácidos Mandélicos/farmacocinética , Fenilpropanolamina/farmacocinética , Pirrolidinas/farmacocinética , Quinuclidinas/farmacocinética , Ensaios Clínicos Controlados Aleatórios como Assunto , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo , Succinato de Solifenacina , Espectrometria de Massas em Tandem , Tetra-Hidroisoquinolinas/farmacocinética , Tartarato de TolterodinaRESUMO
Acyl-CoA:diacylglycerol acyltransferase-1 (DGAT-1) catalyzes the final committed step in the biosynthesis of triglycerides. DGAT-1 knockout mice have been shown to be resistant to diet-induced obesity and have increased insulin sensitivity. Thus, inhibition of DGAT-1 may represent an attractive target for the treatment of obesity or type II diabetes. Herein, we report the discovery and characterization of a potent and selective DGAT-1 inhibitor PF-04620110 (3). Compound 3 inhibits DGAT-1 with an IC50 of 19 nM and shows high selectivity versus a broad panel of off-target pharmacologic end points. In vivo DGAT-1 inhibition has been demonstrated through reduction of plasma triglyceride levels in rodents at doses of ≥0.1 mg/kg following a lipid challenge. On the basis of this pharmacologic and pharmacokinetic profile, compound 3 has been advanced to human clinical studies.
RESUMO
Enzyme kinetic parameters for midazolam were time-dependent in human liver microsomes, under initial velocity conditions. V(max) and K(m) decreased up to 3.7 and 3.1-fold, respectively, for 10 min compared to 1 min incubations. Mathematical models describing the relationship between inactivation and the time-dependency of enzyme kinetic parameter estimates were derived and discussed.
Assuntos
Enzimas/metabolismo , Hipnóticos e Sedativos/farmacocinética , Midazolam/farmacocinética , Algoritmos , Biotransformação , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Interpretação Estatística de Dados , Humanos , Técnicas In Vitro , Cinética , Modelos Estatísticos , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Thirty-two structurally diverse drugs used for the treatment of various conditions of the central nervous system (CNS), along with two active metabolites, and eight non-CNS drugs were measured in brain, plasma, and cerebrospinal fluid in the P-glycoprotein (P-gp) knockout mouse model after subcutaneous administration, and the data were compared with corresponding data obtained in wild-type mice. Total brain-to-plasma (B/P) ratios for the CNS agents ranged from 0.060 to 24. Of the 34 CNS-active agents, only 7 demonstrated B/P area under the plasma concentration curve ratios between P-gp knockout and wild-type mice that did not differ significantly from unity. Most of the remaining drugs demonstrated 1.1- to 2.6-fold greater B/P ratios in P-gp knockout mice versus wild-type mice. Three, risperidone, its active metabolite 9-hydroxyrisperidone, and metoclopramide, showed marked differences in B/P ratios between knockout and wild-type mice (6.6- to 17-fold). Differences in B/P ratios and cerebrospinal fluid/plasma ratios between wild-type and knockout animals were correlated. Through the use of this model, it appears that most CNS-active agents demonstrate at least some P-gp-mediated transport that can affect brain concentrations. However, the impact for the majority of agents is probably minor. The example of risperidone illustrates that even good P-gp substrates can still be clinically useful CNS-active agents. However, for such agents, unbound plasma concentrations may need to be greater than values projected using receptor affinity data to achieve adequate receptor occupancy for effect.
Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/deficiência , Fármacos do Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/deficiência , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sistema Nervoso Central/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/administração & dosagem , Feminino , Camundongos , Camundongos Knockout , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATPRESUMO
Tulathromycin is a novel member of the triamilide class of antibiotics that was developed as a safe and effective single-dose treatment of bovine and porcine respiratory disease. An accurate and precise analytical method was developed for the extraction and measurement of tulathromycin in livestock plasma and lung homogenates. Analytes were solid-phase extracted onto a weak cation exchanger after aqueous dilution of samples and addition of heptadeutero-tulathromycin as an internal standard. Following HPLC with a narrow bore C8 column, quantitative detection of tulathromycin was accomplished by monitoring the transition of a doubly charged precursor ion to a singly charged product ion by tandem mass spectrometry using a triple quadrupole mass spectrometer. Procedures were validated for a dynamic range of 0.1 to 25 ng on column. Observed accuracies were between 90 and 110% of nominal and precision (RSD) varying 7% or less. Response and stability experiments showed that deuterated tulathromycin did not parallel the chemical behavior of tulathromycin. Applicability of the method to livestock studies was tested with plasma and lung samples from cattle and swine dosed with tulathromycin at multiple doses. The results demonstrated that the analytical method performed well in a range of sample concentrations spanning over 3 orders of magnitude and provided dose-exposure relationships for cattle and swine.