Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(1 Pt 2): 016205, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21867271

RESUMO

We probe the limits of nonlinear wave spreading in disordered chains which are known to localize linear waves. We particularly extend recent studies on the regimes of strong and weak chaos during subdiffusive spreading of wave packets [Europhys. Lett. 91, 30001 (2010)] and consider strong disorder, which favors Anderson localization. We probe the limit of infinite disorder strength and study Fröhlich-Spencer-Wayne models. We find that the assumption of chaotic wave packet dynamics and its impact on spreading is in accord with all studied cases. Spreading appears to be asymptotic, without any observable slowing down. We also consider chains with spatially inhomogeneous nonlinearity, which give further support to our findings and conclusions.

2.
Phys Rev Lett ; 107(24): 240602, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22242983

RESUMO

In linear disordered systems Anderson localization makes any wave packet stay localized for all times. Its fate in nonlinear disordered systems (localization versus propagation) is under intense theoretical debate and experimental study. We resolve this dispute showing that, unlike in the common hypotheses, the answer is probabilistic rather than exclusive. At any small but finite nonlinearity (energy) value there is a finite probability for Anderson localization to break up and propagating nonlinear waves to take over. It increases with nonlinearity (energy) and reaches unity at a certain threshold, determined by the initial wave packet size. Moreover, the spreading probability stays finite also in the limit of infinite packet size at fixed total energy. These results generalize to higher dimensions as well.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA