Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38180346

RESUMO

In this paper, we present the design and commissioning results of the upgraded collective Thomson scattering diagnostic at the Wendelstein 7-X stellarator. The diagnostic has a new radiometer designed to operate between the second and third harmonics of the electron cyclotron emission from the plasma at 171-177 GHz, where the emission background has a minimum and is of order 10-100 eV. It allows us to receive the scattered electromagnetic field with a significantly improved signal-to-noise ratio and extends the set of possible scattering geometries compared to the case of the original instrument operated at 140 GHz. The elements of the diagnostic are a narrowband notch filter and a frequency stabilized probing gyrotron that will allow measuring scattered radiation spectra very close to the probing frequency. Here, we characterize the microwave components applied to the radiometer and demonstrate the performance of the complete system that was achieved during the latest experimental campaign, OP2.1.

2.
Phys Rev Lett ; 127(22): 225001, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34889640

RESUMO

We assess the magnetic field configuration in modern fusion devices by comparing experiments with the same heating power, between a stellarator and a heliotron. The key role of turbulence is evident in the optimized stellarator, while neoclassical processes largely determine the transport in the heliotron device. Gyrokinetic simulations elucidate the underlying mechanisms promoting stronger ion scale turbulence in the stellarator. Similar plasma performances in these experiments suggests that neoclassical and turbulent transport should both be optimized in next step reactor designs.

4.
Nature ; 596(7871): 221-226, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34381232

RESUMO

Research on magnetic confinement of high-temperature plasmas has the ultimate goal of harnessing nuclear fusion for the production of electricity. Although the tokamak1 is the leading toroidal magnetic-confinement concept, it is not without shortcomings and the fusion community has therefore also pursued alternative concepts such as the stellarator. Unlike axisymmetric tokamaks, stellarators possess a three-dimensional (3D) magnetic field geometry. The availability of this additional dimension opens up an extensive configuration space for computational optimization of both the field geometry itself and the current-carrying coils that produce it. Such an optimization was undertaken in designing Wendelstein 7-X (W7-X)2, a large helical-axis advanced stellarator (HELIAS), which began operation in 2015 at Greifswald, Germany. A major drawback of 3D magnetic field geometry, however, is that it introduces a strong temperature dependence into the stellarator's non-turbulent 'neoclassical' energy transport. Indeed, such energy losses will become prohibitive in high-temperature reactor plasmas unless a strong reduction of the geometrical factor associated with this transport can be achieved; such a reduction was therefore a principal goal of the design of W7-X. In spite of the modest heating power currently available, W7-X has already been able to achieve high-temperature plasma conditions during its 2017 and 2018 experimental campaigns, producing record values of the fusion triple product for such stellarator plasmas3,4. The triple product of plasma density, ion temperature and energy confinement time is used in fusion research as a figure of merit, as it must attain a certain threshold value before net-energy-producing operation of a reactor becomes possible1,5. Here we demonstrate that such record values provide evidence for reduced neoclassical energy transport in W7-X, as the plasma profiles that produced these results could not have been obtained in stellarators lacking a comparably high level of neoclassical optimization.

5.
Rev Sci Instrum ; 92(3): 033546, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820048

RESUMO

An ion cyclotron emission (ICE) diagnostic is prepared for installation into the W7-X stellarator, with the aim to be operated in the 2022 experimental campaign. The design is based on the successful ICE diagnostic on the ASDEX Upgrade tokamak. The new diagnostic consists of four B-dot probes, mounted about 72° toroidally away (one module) from the neutral beam injector, with an unobstructed plasma view. Two of the B-dot probes are oriented parallel to the local magnetic field, aimed to detect fast magnetosonic waves. The remaining two probes are oriented poloidally, with the aim to detect slow waves. The radio frequency (RF) signals picked up by the probes are transferred via 50 Ω vacuum-compatible coaxial cables to RF detectors. Narrow band notch filters are used to protect the detectors from possible RF waves launched by the W7-X antenna. The signal will be sampled with a four-channel fast analog-to-digital converter with 14 bit depth and 1 GSample/s sampling rate. The diagnostic's phase-frequency characteristic is properly measured in order to allow measuring the wave vectors of the picked up waves.

6.
Phys Rev Lett ; 123(2): 025002, 2019 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-31386539

RESUMO

For the first time, the optimized stellarator Wendelstein 7-X has operated with an island divertor. An operation regime in hydrogen was found in which the total plasma radiation approached the absorbed heating power without noticeable loss of stored energy. The divertor thermography recorded simultaneously a strong reduction of the heat load on all divertor targets, indicating almost complete power detachment. This operation regime was stably sustained over several energy confinement times until the preprogrammed end of the discharge. The plasma radiation is mainly due to oxygen and is located at the plasma edge. This plasma scenario is reproducible and robust at various heating powers, plasma densities, and gas fueling locations. These experimental results show that the island divertor concept actually works and displays good power dissipation potential, producing a promising exhaust concept for the stellarator reactor line.

7.
Rev Sci Instrum ; 90(2): 023501, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30831775

RESUMO

In this paper, we present a method for numerical computation of collective Thomson scattering (CTS). We developed a forward model, eCTS, in the electrostatic approximation and benchmarked it against a full electromagnetic model. Differences between the electrostatic and the electromagnetic models are discussed. The sensitivity of the results to the ion temperature and the plasma composition is demonstrated. We integrated the model into the Bayesian data analysis framework Minerva and used it for the analysis of noisy synthetic data sets produced by a full electromagnetic model. It is shown that eCTS can be used for the inference of the bulk ion temperature. The model has been used to infer the bulk ion temperature from the first CTS measurements on Wendelstein 7-X.

8.
Rev Sci Instrum ; 90(1): 013503, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30709181

RESUMO

A Collective Thomson Scattering (CTS) diagnostic is installed at Wendelstein 7-X for ion temperature measurements in the plasma core. The diagnostic utilizes 140 GHz gyrotrons usually used for electron cyclotron resonance heating (ECRH) as a source of probing radiation. The CTS diagnostic uses a quasi-optical transmission line covering a distance of over 40 m. The transmission line is shared between the ECRH system and the CTS diagnostic. Here we elaborate on the design, installation, and alignment of the CTS diagnostic and present the first measurements at Wendelstein 7-X.

9.
Rev Sci Instrum ; 87(8): 083505, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27587121

RESUMO

Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

10.
Rev Sci Instrum ; 86(11): 113504, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26628132

RESUMO

The Wendelstein 7-X stellarator is a large nuclear fusion device based at Max-Planck-Institut für Plasmaphysik in Greifswald in Germany. The main plasma heating system for steady state operation in W7-X is electron cyclotron resonance heating (ECRH). During operation, part of plama facing components will be directly heated by the non-absorbed power of 1 MW rf beams of ECRH. In order to avoid damages of such components made of graphite tiles during the first operational phase, a near infra-red video system has been developed as a protective diagnostic for safe and secure ECRH operation. Both the mechanical design housing the camera and the optical system are very flexible and respect the requirements of steady state operation. The full system including data acquisition and control system has been successfully tested in the vacuum vessel, including on-line visualization and data storage of the four cameras equipping the ECRH equatorial launchers of W7-X.

11.
Rev Sci Instrum ; 83(10): 10D730, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126902

RESUMO

The critical issues in the development of diagnostics, which need to work robust and reliable under quasi-steady state conditions for the discharge durations of 30 min and which cannot be maintained throughout the one week duration of each operation phase of the Wendelstein 7-X stellarator, are being discussed.

12.
Rev Sci Instrum ; 81(10): 10E133, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033995

RESUMO

The status of the diagnostic developments for the quasistationary operable stellarator Wendelstein 7-X (maximum pulse length of 30 min at 10 MW ECRH heating at 140 GHz) will be reported on. Significant emphasis is being given to the issue of ECRH stray radiation shielding of in-vessel diagnostic components, which will be critical at high density operation requiring O2 and OXB heating.

13.
Rev Sci Instrum ; 81(10): 10E134, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033996

RESUMO

A bolometric diagnostic system with features necessary for steady-state operation in the superconducting stellarator W7-X was designed. During a pulse length of 1800 s with an ECRH (electron cyclotron resonance heating) power of 10 MW, the components suffer not only from a large thermal load but also from stray radiation of the nonabsorbed isotropic microwaves. This paper gives an overview of the technical problems encountered during the design work and the solutions to individual problems to meet the special requirements in W7-X, e.g., component thermal protection, detector offset thermal drift suppression, as well as a microwave shielding technique.

14.
Phys Rev Lett ; 98(25): 255003, 2007 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-17678034

RESUMO

The ordinary-extraordinary-Bernstein-mode conversion process for overdense plasma heating with electron-Bernstein waves is demonstrated in the WEGA stellarator at low magnetic field (approximately 50 mT) at 2.45 GHz. For the first time the conversion from an O wave to an X wave is clearly demonstrated by probe measurements of amplitude and phase of the wave field in the conversion region and supported by two-dimensional full-wave calculations. The propagation and resonant absorption of the Bernstein wave is measured in fast power modulation experiments.

15.
Phys Rev Lett ; 90(7): 075003, 2003 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-12633236

RESUMO

Electron-Bernstein-wave (EBW) current drive in an overdense plasma was demonstrated at the Wendelstein 7-AS stellarator for the first time. The EBWs were generated by O-X-B mode conversion. The relatively high current drive efficiency was consistent with theoretical predictions. The experiments provided first investigations of EBW phase space interaction for wave refractive indices much larger than unity.

16.
Phys Rev Lett ; 89(1): 015001, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12097046

RESUMO

A promising new plasma operational regime on the Wendelstein stellarator W7-AS has been discovered. It is extant above a threshold density and characterized by flat density profiles, high energy and low impurity confinement times, and edge-localized radiation. Impurity accumulation is avoided. Quasistationary discharges with line-averaged densities n(e) to 4 x 10(20) m(-3), radiation levels to 90%, and partial plasma detachment at the divertor target plates can be simultaneously realized. Energy confinement is up to twice that of a standard scaling. At B(t) = 0.9 T, an average beta value of 3.1% is achieved. The high n(e) values allow demonstration of electron Bernstein wave heating using linear mode conversion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA