Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38442270

RESUMO

Genome-wide association studies in systemic lupus erythematosus (SLE) have linked loss-of-function mutations in phagocytic NADPH oxidase complex (NOX2) genes, including NCF1 and NCF2, to disease pathogenesis. The prevailing model holds that reduced NOX2 activity promotes SLE via defective efferocytosis, the immunologically silent clearance of apoptotic cells. Here, we describe a parallel B cell-intrinsic mechanism contributing to breaks in tolerance. In keeping with an important role for B cell Toll-like receptor (TLR) pathways in lupus pathogenesis, NOX2-deficient B cells exhibit enhanced signaling downstream of endosomal TLRs, increased humoral responses to nucleic acid-containing antigens, and the propensity toward humoral autoimmunity. Mechanistically, TLR-dependent NOX2 activation promotes LC3-mediated maturation of TLR-containing endosomes, resulting in signal termination. CRISPR-mediated disruption of NCF1 confirmed a direct role for NOX2 in regulating endosomal TLR signaling in primary human B cells. Together, these data highlight a new B cell-specific mechanism contributing to autoimmune risk in NCF1 and NCF2 variant carriers.


Assuntos
Lúpus Eritematoso Sistêmico , NADPH Oxidases , Humanos , NADPH Oxidases/genética , Estudo de Associação Genômica Ampla , Autoimunidade/genética , Endossomos , Lúpus Eritematoso Sistêmico/genética
2.
Sci Transl Med ; 15(703): eade7028, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37406138

RESUMO

Heterozygous signal transducer and activator of transcription 1 (STAT1) gain-of-function (GOF) mutations promote a clinical syndrome of immune dysregulation characterized by recurrent infections and predisposition to humoral autoimmunity. To gain insights into immune characteristics of STAT1-driven inflammation, we performed deep immunophenotyping of pediatric patients with STAT1 GOF syndrome and age-matched controls. Affected individuals exhibited dysregulated CD4+ T cell and B cell activation, including expansion of TH1-skewed CXCR3+ populations that correlated with serum autoantibody titers. To dissect underlying immune mechanisms, we generated Stat1 GOF transgenic mice (Stat1GOF mice) and confirmed the development of spontaneous humoral autoimmunity that recapitulated the human phenotype. Despite clinical resemblance to human regulatory T cell (Treg) deficiency, Stat1GOF mice and humans with STAT1 GOF syndrome exhibited normal Treg development and function. In contrast, STAT1 GOF autoimmunity was characterized by adaptive immune activation driven by dysregulated STAT1-dependent signals downstream of the type 1 and type 2 interferon (IFN) receptors. However, in contrast to the prevailing type 1 IFN-centric model for STAT1 GOF autoimmunity, Stat1GOF mice lacking the type 1 IFN receptor were only partially protected from STAT1-driven systemic inflammation, whereas loss of type 2 IFN (IFN-γ) signals abrogated autoimmunity. Last, germline STAT1 GOF alleles are thought to enhance transcriptional activity by increasing total STAT1 protein, but the underlying biochemical mechanisms have not been defined. We showed that IFN-γ receptor deletion normalized total STAT1 expression across immune lineages, highlighting IFN-γ as the critical driver of feedforward STAT1 elevation in STAT1 GOF syndrome.


Assuntos
Autoimunidade , Mutação com Ganho de Função , Humanos , Criança , Camundongos , Animais , Autoimunidade/genética , Interferon gama/metabolismo , Síndrome , Inflamação , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
3.
J Immunol ; 209(6): 1033-1038, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35995509

RESUMO

Germline gain-of-function mutations in the transcriptional factor STAT3 promote early-onset multisystemic autoimmunity. To investigate how increased STAT3 promotes systemic inflammation, we generated a transgenic knock-in strain expressing a pathogenic human mutation STAT3K392R within the endogenous murine locus. As predicted, STAT3K392R mice develop progressive lymphoid hyperplasia and systemic inflammation, mirroring the human disease. However, whereas the prevailing model holds that increased STAT3 activity drives human autoimmunity by dysregulating the balance between regulatory T cells and Th17 cell differentiation, we observed increased Th17 cells in the absence of major defects in regulatory T cell differentiation or function. In addition, STAT3K392R animals exhibited a prominent accumulation of IFN-γ-producing CD4+ and CD8+ T cells. Together, these data provide new insights into this complex human genetic syndrome and highlight the diverse cellular mechanisms by which dysregulated STAT3 activity promotes breaks in immune tolerance.


Assuntos
Autoimunidade , Fator de Transcrição STAT3 , Linfócitos T Reguladores , Animais , Linfócitos T CD8-Positivos/metabolismo , Diferenciação Celular , Mutação com Ganho de Função , Técnicas de Introdução de Genes , Humanos , Inflamação/patologia , Camundongos , Camundongos Transgênicos , Fator de Transcrição STAT3/genética , Células Th17
4.
J Immunol ; 207(9): 2217-2222, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34588220

RESUMO

Cognate interactions between autoreactive B and T cells promote systemic lupus erythematosus pathogenesis by inter alia facilitating spontaneous germinal center (GC) formation. Whereas both myeloid and B cell APCs express B7 ligands (CD80 and CD86), the prevailing model holds that dendritic cell costimulation is sufficient for CD28-dependent T cell activation. In this study, we report that B cell-intrinsic CD80/CD86 deletion unexpectedly abrogates GCs in murine lupus. Interestingly, absent GCs differentially impacted serum autoantibodies. In keeping with distinct extrafollicular and GC activation pathways driving lupus autoantibodies, lack of GCs correlated with loss of RNA-associated autoantibodies but preserved anti-dsDNA and connective tissue autoantibody titers. Strikingly, even heterozygous B cell CD80/CD86 deletion was sufficient to prevent autoimmune GCs and RNA-associated autoantibodies. Together, these findings identify a key mechanism whereby B cells promote lupus pathogenesis by providing a threshold of costimulatory signals required for autoreactive T cell activation.


Assuntos
Linfócitos B/imunologia , Centro Germinativo/imunologia , Lúpus Eritematoso Sistêmico/imunologia , Nefrite Lúpica/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoanticorpos/metabolismo , Autoimunidade , Antígeno B7-1/genética , Antígeno B7-1/metabolismo , Antígeno B7-2/genética , Antígeno B7-2/metabolismo , Células Cultivadas , Modelos Animais de Doenças , Humanos , Ativação Linfocitária , Camundongos , Camundongos Knockout , Receptor Cross-Talk
5.
J Immunol ; 203(11): 2817-2826, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31636237

RESUMO

Age-associated B cells (ABCs) are a unique subset of B cells defined by surface CD11b and CD11c expression. Although ABC expansion has been observed in both human and animal studies in the setting of advanced age, during humoral autoimmunity and following viral infection, the functional properties of this cellular subset remain incompletely defined. In the current study, we demonstrate that ABCs fulfill the criteria for memory B cells (MBCs), based on evidence of Ag-dependent expansion and persistence in a state poised for rapid differentiation into Ab-secreting plasma cells during secondary responses. First, we show that a majority of ABCs are not actively cycling but exhibit an extensive replication history consistent with prior Ag engagement. Second, despite unswitched surface IgM expression, ABCs show evidence of activation-induced cytidine deaminase (AID)-dependent somatic hypermutation. Third, BCRs cloned from sorted ABCs exhibit broad autoreactivity and polyreactivity. Although the overall level of ABC self-reactivity was not increased relative to naive B cells, ABCs lacked features of functional anergy characteristic of autoreactive B cells. Fourth, ABCs express MBC surface markers consistent with being poised for rapid plasma cell differentiation during recall responses. Finally, in a murine model of viral infection, adoptively transferred CD11c+ B cells rapidly differentiated into class-switched Ab-secreting cells upon Ag rechallenge. In summary, we phenotypically and functionally characterize ABCs as IgM-expressing MBCs, findings that together implicate ABCs in the pathogenesis of systemic autoimmunity.


Assuntos
Envelhecimento/imunologia , Linfócitos B/imunologia , Antígeno CD11c/imunologia , Animais , Memória Imunológica/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
6.
Stem Cell Reports ; 9(4): 1152-1166, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28966119

RESUMO

Wilms' tumor suppressor 1 (WT1) plays an important role in cell proliferation and mesenchymal-epithelial balance in normal development and disease. Here, we show that following podocyte depletion in three experimental models, and in patients with focal segmental glomerulosclerosis (FSGS) and membranous nephropathy, WT1 increased significantly in cells of renin lineage (CoRL). In an animal model of FSGS in RenWt1fl/fl reporter mice with inducible deletion of WT1 in CoRL, CoRL proliferation and migration to the glomerulus was reduced, and glomerular disease was worse compared with wild-type mice. To become podocytes, CoRL undergo mesenchymal-to-epithelial transformation (MET), typified by reduced staining for mesenchymal markers (MYH11, SM22, αSMA) and de novo expression of epithelial markers (E-cadherin and cytokeratin18). Evidence for changes in MET markers was barely detected in RenWt1fl/fl mice. Our results show that following podocyte depletion, WT1 plays essential roles in CoRL proliferation and migration toward an adult podocyte fate.


Assuntos
Linhagem da Célula , Podócitos/metabolismo , Renina/genética , Proteínas WT1/genética , Animais , Biomarcadores , Movimento Celular/genética , Proliferação de Células/genética , Modelos Animais de Doenças , Deleção de Genes , Testes de Função Renal , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Camundongos , Camundongos Knockout , Podócitos/citologia , Renina/metabolismo , Proteínas WT1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA