Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nat Commun ; 14(1): 3684, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407564

RESUMO

Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and ß-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting ß-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio's robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Ligantes , beta-Arrestina 2/metabolismo , Descoberta de Drogas , beta-Arrestinas/metabolismo
2.
J Biol Chem ; 299(9): 105107, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37517699

RESUMO

Protein-protein interactions (PPIs) form the foundation of any cell signaling network. Considering that PPIs are highly dynamic processes, cellular assays are often essential for their study because they closely mimic the biological complexities of cellular environments. However, incongruity may be observed across different PPI assays when investigating a protein partner of interest; these discrepancies can be partially attributed to the fusion of different large functional moieties, such as fluorescent proteins or enzymes, which can yield disparate perturbations to the protein's stability, subcellular localization, and interaction partners depending on the given cellular assay. Owing to their smaller size, epitope tags may exhibit a diminished susceptibility to instigate such perturbations. However, while they have been widely used for detecting or manipulating proteins in vitro, epitope tags lack the in vivo traceability and functionality needed for intracellular biosensors. Herein, we develop NbV5, an intracellular nanobody binding the V5-tag, which is suitable for use in cellular assays commonly used to study PPIs such as BRET, NanoBiT, and Tango. The NbV5:V5 tag system has been applied to interrogate G protein-coupled receptor signaling, specifically by replacing larger functional moieties attached to the protein interactors, such as fluorescent or luminescent proteins (∼30 kDa), by the significantly smaller V5-tag peptide (1.4 kDa), and for microscopy imaging which is successfully detected by NbV5-based biosensors. Therefore, the NbV5:V5 tag system presents itself as a versatile tool for live-cell imaging and a befitting adaptation to existing cellular assays dedicated to probing PPIs.

3.
ACS Infect Dis ; 9(5): 1064-1077, 2023 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-37053583

RESUMO

Entry of enveloped viruses in host cells requires the fusion of viral and host cell membranes, a process that is facilitated by viral fusion proteins protruding from the viral envelope. These viral fusion proteins need to be triggered by host factors, and for some viruses, this event occurs inside endosomes and/or lysosomes. Consequently, these 'late-penetrating viruses' must be internalized and delivered to entry-conducive intracellular vesicles. Because endocytosis and vesicular trafficking are tightly regulated cellular processes, late-penetrating viruses also depend on specific host proteins for efficient delivery to the site of fusion, suggesting that these could be targeted for antiviral therapy. In this study, we investigated a role for sphingosine kinases (SKs) in viral entry and found that chemical inhibition of sphingosine kinase 1 (SK1) and/or SK2 and knockdown of SK1/2 inhibited entry of Ebola virus (EBOV) into host cells. Mechanistically, inhibition of SK1/2 prevented EBOV from reaching late-endosomes and lysosomes that contain the EBOV receptor, Niemann Pick C1 (NPC1). Furthermore, we present evidence that suggests that the trafficking defect caused by SK1/2 inhibition occurs independently of sphingosine-1-phosphate (S1P) signaling through cell-surface S1P receptors. Lastly, we found that chemical inhibition of SK1/2 prevents entry of other late-penetrating viruses, including arenaviruses and coronaviruses, and inhibits infection by replication-competent EBOV and SARS-CoV-2 in Huh7.5 cells. In sum, our results highlight an important role played by SK1/2 in endocytic trafficking, which can be targeted to inhibit entry of late-penetrating viruses and could serve as a starting point for the development of broad-spectrum antiviral therapeutics.


Assuntos
Arenavirus , COVID-19 , Ebolavirus , Doença pelo Vírus Ebola , Humanos , Linhagem Celular , Esfingosina , SARS-CoV-2 , Proteínas Virais de Fusão
5.
Nat Microbiol ; 7(12): 2011-2024, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36357713

RESUMO

Wildlife reservoirs of broad-host-range viruses have the potential to enable evolution of viral variants that can emerge to infect humans. In North America, there is phylogenomic evidence of continual transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from humans to white-tailed deer (Odocoileus virginianus) through unknown means, but no evidence of transmission from deer to humans. We carried out an observational surveillance study in Ontario, Canada during November and December 2021 (n = 300 deer) and identified a highly divergent lineage of SARS-CoV-2 in white-tailed deer (B.1.641). This lineage is one of the most divergent SARS-CoV-2 lineages identified so far, with 76 mutations (including 37 previously associated with non-human mammalian hosts). From a set of five complete and two partial deer-derived viral genomes we applied phylogenomic, recombination, selection and mutation spectrum analyses, which provided evidence for evolution and transmission in deer and a shared ancestry with mink-derived virus. Our analysis also revealed an epidemiologically linked human infection. Taken together, our findings provide evidence for sustained evolution of SARS-CoV-2 in white-tailed deer and of deer-to-human transmission.


Assuntos
COVID-19 , Cervos , Animais , Humanos , SARS-CoV-2/genética
6.
iScience ; 25(11): 105316, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36254158

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike glycoprotein (S) binds to angiotensin-converting enzyme 2 (ACE2) to mediate membrane fusion via two distinct pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In this study, we found that SARS-CoV-2 S has a wider protease usage and can also be activated by TMPRSS13 and matrix metalloproteinases (MMPs). We found that MMP-2 and MMP-9 played roles in SARS-CoV-2 S cell-cell fusion and TMPRSS2- and cathepsin-independent viral entry in cells expressing high MMP levels. MMP-dependent viral entry required cleavage at the S1/S2 junction in viral producer cells, and differential processing of variants of concern S dictated its usage; the efficiently processed Delta S preferred metalloproteinase-dependent entry when available, and less processed Omicron S was unable to us metalloproteinases for entry. As MMP-2/9 are released during inflammation, they may play roles in S-mediated cytopathic effects, tropism, and disease outcome.

7.
Commun Biol ; 5(1): 933, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085335

RESUMO

Nanobodies offer several potential advantages over mAbs for the control of SARS-CoV-2. Their ability to access cryptic epitopes conserved across SARS-CoV-2 variants of concern (VoCs) and feasibility to engineer modular, multimeric designs, make these antibody fragments ideal candidates for developing broad-spectrum therapeutics against current and continually emerging SARS-CoV-2 VoCs. Here we describe a diverse collection of 37 anti-SARS-CoV-2 spike glycoprotein nanobodies extensively characterized as both monovalent and IgG Fc-fused bivalent modalities. The nanobodies were collectively shown to have high intrinsic affinity; high thermal, thermodynamic and aerosolization stability; broad subunit/domain specificity and cross-reactivity across existing VoCs; wide-ranging epitopic and mechanistic diversity and high and broad in vitro neutralization potencies. A select set of Fc-fused nanobodies showed high neutralization efficacies in hamster models of SARS-CoV-2 infection, reducing viral burden by up to six orders of magnitude to below detectable levels. In vivo protection was demonstrated with anti-RBD and previously unreported anti-NTD and anti-S2 nanobodies. This collection of nanobodies provides a potential therapeutic toolbox from which various cocktails or multi-paratopic formats could be built to combat multiple SARS-CoV-2 variants.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Animais , Anticorpos Monoclonais , Cricetinae , Humanos , SARS-CoV-2/genética , Anticorpos de Domínio Único/genética
8.
Nat Commun ; 13(1): 4784, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35970983

RESUMO

Regional connectivity and land travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding in the early pandemic to more regional seeding for the travel restrictions period. We show that land travel, particularly freight transport, drove introduction risk during the travel restrictions period. High regional connectivity and land travel also drove Jordan's export risk. Our findings emphasize regional connectedness and land travel as drivers of transmission in the Middle East.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , Oriente Médio/epidemiologia , Pandemias/prevenção & controle , Viagem
9.
ACS Omega ; 7(20): 16939-16951, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35647460

RESUMO

Existing pharmacotherapies acting on the opioid receptor system have been extensively used to treat chronic pain and addictive disorders. Nevertheless, the adverse side effects associated with opioid therapy underscore the need for concerted measures to develop safer analgesics. A promising avenue of research stems from the characterization of a sodium-dependent allosteric regulation site housed within the delta-opioid receptor and several other G protein-coupled receptors (GPCRs), thereby revealing the presence of a cluster of sodium and water molecules lodged in a cavity thought to be present only in the inactive conformation of the receptor. Studies into the structure-function relationship of said pocket demonstrated its critical involvement in the functional control of GPCR signaling. While the sodium pocket has been proposed to be present in the majority of class A GPCRs, the shape of this allosteric cavity appears to have significant structural variation among crystallographically solved GPCRs, making this site optimal for the design of new allosteric modulators that will be selective for opioid receptors. The size of the sodium pocket supports the accommodation of small molecules, and it has been speculated that promiscuous amiloride and 5'-substituted amiloride-related derivatives could target this cavity within many GPCRs, including opioid receptors. Using pharmacological approaches, we have described the selectivities of 5'-substituted amiloride-related derivatives, as well as the hitherto undescribed activity of the NHE1 inhibitor zoniporide toward class A GPCRs. Our investigations into the structural features of the delta-opioid receptor and its ensuing signaling activities suggest a bitopic mode of overlapping interactions involving the orthosteric site and the juxtaposed Na+ pocket, but only at the active or partially active opioid receptor.

10.
Mol Ther ; 30(9): 2998-3016, 2022 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-35526097

RESUMO

We established a split nanoluciferase complementation assay to rapidly screen for inhibitors that interfere with binding of the receptor binding domain (RBD) of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein with its target receptor, angiotensin-converting enzyme 2 (ACE2). After a screen of 1,200 US Food and Drug Administration (FDA)-approved compounds, we identified bifonazole, an imidazole-based antifungal agent, as a competitive inhibitor of RBD-ACE2 binding. Mechanistically, bifonazole binds ACE2 around residue K353, which prevents association with the RBD, affecting entry and replication of spike-pseudotyped viruses as well as native SARS-CoV-2 and its variants of concern (VOCs). Intranasal administration of bifonazole reduces lethality in K18-hACE2 mice challenged with vesicular stomatitis virus (VSV)-spike by 40%, with a similar benefit after live SARS-CoV-2 challenge. Our screen identified an antiviral agent that is effective against SARS-CoV-2 and VOCs such as Omicron that employ the same receptor to infect cells and therefore has high potential to be repurposed to control, treat, or prevent coronavirus disease 2019 (COVID-19).


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , Imidazóis , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Animais , Antivirais/farmacologia , Imidazóis/farmacologia , Camundongos , Ligação Proteica , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/química , Estados Unidos , United States Food and Drug Administration
11.
EBioMedicine ; 74: 103700, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34861490

RESUMO

BACKGROUND: Antibodies raised against human seasonal coronaviruses (sCoVs), which are responsible for the common cold, are known to cross-react with SARS-CoV-2 antigens. This prompts questions about their protective role against SARS-CoV-2 infections and COVID-19 severity. However, the relationship between sCoVs exposure and SARS-CoV-2 correlates of protection are not clearly identified. METHODS: We performed a cross-sectional analysis of cross-reactivity and cross-neutralization to SARS-CoV-2 antigens (S-RBD, S-trimer, N) using pre-pandemic sera from four different groups: pediatrics and adolescents, individuals 21 to 70 years of age, older than 70 years of age, and individuals living with HCV or HIV. Data was then further analysed using machine learning to identify predictive patterns of neutralization based on sCoVs serology. FINDINGS: Antibody cross-reactivity to SARS-CoV-2 antigens varied between 1.6% and 15.3% depending on the cohort and the isotype-antigen pair analyzed. We also show a range of neutralizing activity (0-45%) with median inhibition ranging from 17.6 % to 23.3 % in serum that interferes with SARS-CoV-2 spike attachment to ACE2 independently of age group. While the abundance of sCoV antibodies did not directly correlate with neutralization, we show that neutralizing activity is rather dependent on relative ratios of IgGs in sera directed to all four sCoV spike proteins. More specifically, we identified antibodies to NL63 and OC43 as being the most important predictors of neutralization. INTERPRETATION: Our data support the concept that exposure to sCoVs triggers antibody responses that influence the efficiency of SARS-CoV-2 spike binding to ACE2, which may potentially impact COVID-19 disease severity through other latent variables. FUNDING: This study was supported by a grant by the CIHR (VR2 -172722) and by a grant supplement by the CITF, and by a NRC Collaborative R&D Initiative Grant (PR031-1).


Assuntos
Anticorpos Antivirais/sangue , Coronavirus Humano 229E/imunologia , Coronavirus Humano NL63/imunologia , Coronavirus Humano OC43/imunologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Adolescente , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/metabolismo , Anticorpos Neutralizantes/sangue , COVID-19/imunologia , COVID-19/patologia , Resfriado Comum/virologia , Reações Cruzadas/imunologia , Estudos Transversais , Humanos , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Índice de Gravidade de Doença , Glicoproteína da Espícula de Coronavírus/metabolismo , Adulto Jovem
12.
ACS Infect Dis ; 7(11): 3034-3051, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34658235

RESUMO

The antimicrobial medication malarone (atovaquone/proguanil) is used as a fixed-dose combination for treating children and adults with uncomplicated malaria or as chemoprophylaxis for preventing malaria in travelers. It is an inexpensive, efficacious, and safe drug frequently prescribed around the world. Following anecdotal evidence from 17 patients in the provinces of Quebec and Ontario, Canada, suggesting that malarone/atovaquone may present some benefits in protecting against COVID-19, we sought to examine its antiviral potential in limiting the replication of SARS-CoV-2 in cellular models of infection. In VeroE6 expressing human TMPRSS2 and human lung Calu-3 epithelial cells, we show that the active compound atovaquone at micromolar concentrations potently inhibits the replication of SARS-CoV-2 and other variants of concern including the alpha, beta, and delta variants. Importantly, atovaquone retained its full antiviral activity in a primary human airway epithelium cell culture model. Mechanistically, we demonstrate that the atovaquone antiviral activity against SARS-CoV-2 is partially dependent on the expression of TMPRSS2 and that the drug can disrupt the interaction of the spike protein with the viral receptor, ACE2. Additionally, spike-mediated membrane fusion was also reduced in the presence of atovaquone. In the United States, two clinical trials of atovaquone administered alone or in combination with azithromycin were initiated in 2020. While we await the results of these trials, our findings in cellular infection models demonstrate that atovaquone is a potent antiviral FDA-approved drug against SARS-CoV-2 and other variants of concern in vitro.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , Atovaquona/farmacologia , Humanos , Estados Unidos
13.
mBio ; 12(3): e0078821, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34182784

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that is continuously evolving. Although its RNA-dependent RNA polymerase exhibits some exonuclease proofreading activity, viral sequence diversity can be produced by replication errors and host factors. A diversity of genetic variants can be observed in the intrahost viral population structure of infected individuals. Most mutations will follow a neutral molecular evolution and will not make significant contributions to variations within and between infected hosts. Herein, we profiled the intrasample genetic diversity of SARS-CoV-2 variants, also known as quasispecies, using high-throughput sequencing data sets from 15,289 infected individuals and infected cell lines. Despite high mutational background, we identified recurrent intragenetic variable positions in the samples analyzed, including several positions at the end of the gene encoding the viral spike (S) protein. Strikingly, we observed a high frequency of C→A missense mutations resulting in the S protein lacking the last 20 amino acids (SΔ20). We found that this truncated S protein undergoes increased processing and increased syncytium formation, presumably due to escaping M protein retention in intracellular compartments. Our findings suggest the emergence of a high-frequency viral sublineage that is not horizontally transmitted but potentially involved in intrahost disease cytopathic effects. IMPORTANCE The mutation rate and evolution of RNA viruses correlate with viral adaptation. While most mutations do not make significant contributions to viral molecular evolution, some are naturally selected and produce variants through positive selection. Many SARS-CoV-2 variants have been recently described and show phenotypic selection toward more infectious viruses. Our study describes another type of variant that does not contribute to interhost heterogeneity but rather phenotypic selection toward variants that might have increased cytopathic effects. We identified that a C-terminal truncation of the spike protein removes an important endoplasmic reticulum (ER) retention signal, which consequently results in a spike variant that easily travels through the Golgi complex toward the plasma membrane in a preactivated conformation, leading to increased syncytium formation.


Assuntos
COVID-19/patologia , Genoma Viral/genética , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Linhagem Celular , Evolução Molecular , Variação Genética/genética , Células Gigantes/virologia , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Taxa de Mutação , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia
14.
PLoS Pathog ; 17(1): e1009275, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33513206

RESUMO

Filoviruses, such as the Ebola virus (EBOV) and Marburg virus (MARV), are causative agents of sporadic outbreaks of hemorrhagic fevers in humans. To infect cells, filoviruses are internalized via macropinocytosis and traffic through the endosomal pathway where host cathepsin-dependent cleavage of the viral glycoproteins occurs. Subsequently, the cleaved viral glycoprotein interacts with the late endosome/lysosome resident host protein, Niemann-Pick C1 (NPC1). This interaction is hypothesized to trigger viral and host membrane fusion, which results in the delivery of the viral genome into the cytoplasm and subsequent initiation of replication. Some studies suggest that EBOV viral particles activate signaling cascades and host-trafficking factors to promote their localization with host factors that are essential for entry. However, the mechanism through which these activating signals are initiated remains unknown. By screening a kinase inhibitor library, we found that receptor tyrosine kinase inhibitors potently block EBOV and MARV GP-dependent viral entry. Inhibitors of epidermal growth factor receptor (EGFR), tyrosine protein kinase Met (c-Met), and the insulin receptor (InsR)/insulin like growth factor 1 receptor (IGF1R) blocked filoviral GP-mediated entry and prevented growth of replicative EBOV in Vero cells. Furthermore, inhibitors of c-Met and InsR/IGF1R also blocked viral entry in macrophages, the primary targets of EBOV infection. Interestingly, while the c-Met and InsR/IGF1R inhibitors interfered with EBOV trafficking to NPC1, virus delivery to the receptor was not impaired in the presence of the EGFR inhibitor. Instead, we observed that the NPC1 positive compartments were phenotypically altered and rendered incompetent to permit viral entry. Despite their different mechanisms of action, all three RTK inhibitors tested inhibited virus-induced Akt activation, providing a possible explanation for how EBOV may activate signaling pathways during entry. In sum, these studies strongly suggest that receptor tyrosine kinases initiate signaling cascades essential for efficient post-internalization entry steps.


Assuntos
Ebolavirus/fisiologia , Doença pelo Vírus Ebola/virologia , Proteínas Tirosina Quinases/metabolismo , Transdução de Sinais , Animais , Chlorocebus aethiops , Ebolavirus/genética , Endocitose , Endossomos/metabolismo , Endossomos/virologia , Interações Hospedeiro-Patógeno , Humanos , Espaço Intracelular/virologia , Lisossomos/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/genética , Células Vero , Vírion , Internalização do Vírus , Replicação Viral
15.
J Vis Exp ; (157)2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32225148

RESUMO

As the largest and most versatile gene superfamily and mediators of a gamut of cellular signaling pathways, G-protein-coupled receptors (GPCRs) represent one of the most promising targets for the pharmaceutical industry. Ergo, the design, implementation, and optimization of GPCR ligand screening assays is crucial, as they represent remote-control tools for drug discovery and for manipulating GPCR pharmacology and outcomes. In the past, G-protein dependent assays typified this area of research, detecting ligand-induced events and quantifying the generation of secondary messengers. However, since the advent of functional selectivity, as well as an increased awareness of several other G protein-independent pathways and the limitations associated with G-protein dependent assays, there is a greater push towards the creation of alternative GPCR ligand screening assays. Towards this endeavor, we describe the application of one such resource, the PRESTO-Tango platform, a luciferase reporter-based system that enables the parallel and simultaneous interrogation of the human GPCR-ome, a feat which was previously considered technically and economically unfeasible. Based on a G-protein independent ß-arrestin2 recruitment assay, the universality of ß-arrestin2-mediated trafficking and signaling at GPCRs makes PRESTO-TANGO an apt tool for studying approximately 300 non-olfactory human GPCRs, including approximately 100 orphan receptors. PRESTO-Tango's sensitivity and robustness make it suitable for primary high-throughput screens using compound libraries, employed to uncover new GPCR targets for known drugs or to discover new ligands for orphan receptors.


Assuntos
Bioensaio/métodos , Ensaios de Triagem em Larga Escala/métodos , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 2/metabolismo , Análise de Dados , Células HEK293 , Humanos , Ligantes , Luminescência , Transfecção
16.
Methods Mol Biol ; 1947: 257-267, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30969421

RESUMO

Intracellular signal transduced by G protein-coupled receptors (GPCRs) is tightly controlled by a guanine nucleotide-binding complex made of G protein Gα, Gß, and Gγ subunits, as well as a growing array of regulatory and accessory proteins such as arrestins. G protein-independent ß-arrestin recruitment at GPCRs is universally accepted as the canonical interactor system and it has been found to be a powerful tracker of most GPCRs activation. Pharmacological concepts have evolved remarkably after the finding that different ligands, binding at the same receptor, can selectively activate specific subsets of signaling pathways among all pathways activated by balanced ligands. This new paradigm referred to as functional selectivity or biased signaling, has opened new avenues for the design of tailored drugs with enhanced therapeutic efficacies and reduced side effects. Here, we describe a unique platform for the interrogation of GPCR using a transcriptional-based assay to measure transient ß-arrestin recruitment called Tango.


Assuntos
Bioensaio/métodos , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestinas/metabolismo , Bleomicina/farmacologia , Células HEK293 , Humanos , Ligantes , Transdução de Sinais , Ativação Transcricional
17.
Alcohol Clin Exp Res ; 42(4): 718-726, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29417597

RESUMO

BACKGROUND: Chronic ethanol (EtOH) exposure has been found to inhibit adult hippocampal neurogenesis in multiple models of alcohol addiction. However, acute EtOH inhibition of adult neurogenesis is not well studied. Although many abused drugs have been found to inhibit adult neurogenesis, few have studied cannabinoids or cannabinoids with EtOH, although human use of both together is becoming more common. We used an acute binge alcohol drinking model in combination with select cannabinoid receptor agonists and antagonists to investigate the actions of each alone and together on hippocampal neurogenesis. METHODS: Adult male Wistar rats were treated with an acute binge dose of EtOH (5 g/kg, i.g.), cannabinoid 1 receptor (CB1R) or cannabinoid 2 receptor (CB2R) agonists, as well as selective cannabinoid (CB) antagonists, alone or combined. Hippocampal doublecortin (DCX), Ki67, and activated cleaved caspase-3 (CC3) immunohistochemistry were used to assess neurogenesis, neuroprogenitor proliferation, and cell death, respectively. RESULTS: We found that treatment with EtOH or the CB1R agonist, arachidonoyl-2'-chloroethylamide (ACEA), and the combination significantly reduced DCX-positive neurons (DCX + IR) in dentate gyrus (DG) and increased CC3. Further, using an inhibitor of endocannabinoid metabolism, for example, JZL195, we also found reduced DCX + IR neurogenesis. Treatment with 2 different CB1R antagonists (AM251 or SR141716) reversed both CB1R agonist and EtOH inhibition of adult neurogenesis. CB2R agonist HU-308 treatment did not produce any significant change in DCX + IR. Interestingly, neither EtOH nor CB1R agonist produced any alteration in cell proliferation in DG as measured by Ki67 + cell population, but CC3-positive cell numbers increased following EtOH or ACEA treatment suggesting an increase in cell death. CONCLUSIONS: Together, these findings suggest that acute CB1R cannabinoid receptor activation and binge EtOH treatment reduce neurogenesis through mechanisms involving CB1R.


Assuntos
Consumo Excessivo de Bebidas Alcoólicas/fisiopatologia , Etanol/efeitos adversos , Hipocampo/efeitos dos fármacos , Hipocampo/fisiopatologia , Neurogênese/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Animais , Canabinoides/farmacologia , Carbamatos/farmacologia , Caspase 3/metabolismo , Morte Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Interações Medicamentosas , Endocanabinoides/farmacologia , Hipocampo/metabolismo , Antígeno Ki-67/metabolismo , Masculino , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Piperazinas/farmacologia , Piperidinas/farmacologia , Pirazóis/farmacologia , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/metabolismo , Rimonabanto/farmacologia
18.
Chemistry ; 23(19): 4615-4624, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28182309

RESUMO

Allosteric sodium in the helix bundle of a G protein-coupled receptor (GPCR) can modulate the receptor activation on the intracellular side. This phenomenon has confounded the GPCR community for decades. In this work, we present a theoretical model that reveals the mechanism of the allosteric modulation induced by sodium in the δ-opioid receptor. We found that the allosteric sodium ion exploits a distinct conformation of the key residue Trp2746.48 to propagate the modulation to helices 5 and 6, which further transmits along the helices and regulates their positions on the intracellular side. This mechanism is supported by subsequent functional assays. Remarkably, our results highlight the contrast between the allosteric effects towards two GPCR partners, the G protein and ß-arrestin, as indicated by the fact that the allosteric modulation initiated by the sodium ion significantly affects the ß-arrestin recruitment, while it alters the G protein signaling only moderately. We believe that the mechanism revealed in this work can be used to explain allosteric effects initiated by sodium in other GPCRs since the allosteric sodium is highly conserved across GPCRs.


Assuntos
Receptores Opioides delta/metabolismo , Sódio/metabolismo , Regulação Alostérica , Sítio Alostérico , Humanos , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Receptores Opioides delta/química , Sódio/química , Termodinâmica
19.
J Biol Chem ; 289(48): 33245-57, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25271165

RESUMO

Inflammasomes are multi-protein complexes that regulate maturation of the interleukin 1ß-related cytokines IL-1ß and IL-18 through activation of the cysteine proteinase caspase-1. NOD-like receptor family, pyrin domain containing 3 (NLRP3) protein is a key component of inflammasomes that assemble in response to a wide variety of endogenous and pathogen-derived danger signals. Activation of the NLRP3-inflammasome and subsequent secretion of IL-1ß is highly regulated by at least three processes: transcriptional activation of both NLRP3 and pro-IL-1ß genes, non-transcriptional priming of NLRP3, and final activation of NLRP3. NLRP3 is predominantly expressed in cells of the hematopoietic lineage. Using a yeast two-hybrid screen, we identified the hematopoietic-restricted protein, G protein signaling modulator-3 (GPSM3), as a NLRP3-interacting protein and a negative regulator of IL-1ß production triggered by NLRP3-dependent inflammasome activators. In monocytes, GPSM3 associates with the C-terminal leucine-rich repeat domain of NLRP3. Bone marrow-derived macrophages lacking GPSM3 expression exhibit an increase in NLRP3-dependent IL-1ß, but not TNF-α, secretion. Furthermore, GPSM3-null mice have enhanced serum and peritoneal IL-1ß production following Alum-induced peritonitis. Our findings suggest that GPSM3 acts as a direct negative regulator of NLRP3 function.


Assuntos
Proteínas de Transporte/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Inflamassomos/metabolismo , Adjuvantes Imunológicos/efeitos adversos , Adjuvantes Imunológicos/farmacologia , Compostos de Alúmen/efeitos adversos , Compostos de Alúmen/farmacologia , Animais , Proteínas de Transporte/genética , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Inflamassomos/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peritonite/induzido quimicamente , Peritonite/metabolismo , Peritonite/patologia , Estrutura Terciária de Proteína
20.
Mol Immunol ; 54(2): 193-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23280397

RESUMO

Polymorphism at the GPSM3 gene locus is inversely associated with four systemic autoimmune diseases, including rheumatoid arthritis and ankylosing spondylitis. G-protein signaling modulator-3 (GPSM3) expression is most pronounced in myeloid cells, in which it targets heterotrimeric G-protein Gαi subunits of chemokine receptors, critical to immune function. To begin to explore the regulatory role of GPSM3 in monocytes, human THP-1 and primary mouse myeloid cells were cultured under stimulus conditions; GPSM3 was found by immunoblotting to be expressed at highest levels in the mature monocyte. To evaluate the effects of GPSM3 deficiency on a myeloid-dependent autoimmune disease, collagen antibody-induced arthritis (CAIA) was induced in Gpsm3-/- and control mice, which were then analyzed for clinical score, paw swelling, intra-articular proinflammatory markers, and histopathology. Mice lacking GPSM3 were protected from CAIA, and expression of monocyte-representative pro-inflammatory chemokine receptors and cytokines in paws of Gpsm3-/- mice were decreased. Flow cytometry, apoptosis, and transwell chemotaxis experiments were conducted to further characterize the effect of GPSM3 deficiency on survival and chemokine responsiveness of monocytes. GPSM3-deficient myeloid cells had reduced migration ex vivo to CCL2, CX3CL1, and chemerin and enhanced apoptosis in vitro. Our results suggest that GPSM3 is an important regulator of monocyte function involving mechanisms of differentiation, survival, and chemotaxis, and deficiency in GPSM3 expression is protective in acute inflammatory arthritis.


Assuntos
Artrite Experimental/genética , Artrite Experimental/imunologia , Doenças Autoimunes/genética , Doenças Autoimunes/imunologia , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Monócitos/imunologia , Animais , Sobrevivência Celular/genética , Citocinas/genética , Citocinas/imunologia , Modelos Animais de Doenças , Inibidores de Dissociação do Nucleotídeo Guanina/imunologia , Mediadores da Inflamação/imunologia , Camundongos , Camundongos Knockout , Monócitos/metabolismo , Células Mieloides/imunologia , Células Mieloides/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA