Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Lancet Microbe ; 2(7): e331-e341, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-35544167

RESUMO

BACKGROUND: The clonal diversity underpinning trends in multidrug resistant Escherichia coli causing bloodstream infections remains uncertain. We aimed to determine the contribution of individual clones to resistance over time, using large-scale genomics-based molecular epidemiology. METHODS: This was a longitudinal, E coli population, genomic, cohort study that sampled isolates from 22 512 E coli bloodstream infections included in the Norwegian surveillance programme on resistant microbes (NORM) from 2002 to 2017. 15 of 22 laboratories were able to share their isolates, and the first 22·5% of isolates from each year were requested. We used whole genome sequencing to infer the population structure (PopPUNK), and we investigated the clade composition of the dominant multidrug resistant clonal complex (CC)131 using genetic markers previously reported for sequence type (ST)131, effective population size (BEAST), and presence of determinants of antimicrobial resistance (ARIBA, PointFinder, and ResFinder databases) over time. We compared these features between the 2002-10 and 2011-17 time periods. We also compared our results with those of a longitudinal study from the UK done between 2001 and 2011. FINDINGS: Of the 3500 isolates requested from the participating laboratories, 3397 (97·1%) were received, of which 3254 (95·8%) were successfully sequenced and included in the analysis. A significant increase in the number of multidrug resistant CC131 isolates from 71 (5·6%) of 1277 in 2002-10 to 207 (10·5%) of 1977 in 2011-17 (p<0·0001), was the largest clonal expansion. CC131 was the most common clone in extended-spectrum ß-lactamase (ESBL)-positive isolates (75 [58·6%] of 128) and fluoroquinolone non-susceptible isolates (148 [39·2%] of 378). Within CC131, clade A increased in prevalence from 2002, whereas the global multidrug resistant clade C2 was not observed until 2007. Multiple de-novo acquisitions of both blaCTX-M ESBL-encoding genes in clades A and C1 and gain of phenotypic fluoroquinolone non-susceptibility across the clade A phylogeny were observed. We estimated that exponential increases in the effective population sizes of clades A, C1, and C2 occurred in the mid-2000s, and in clade B a decade earlier. The rate of increase in the estimated effective population size of clade A (Ne=3147) was nearly ten-times that of C2 (Ne=345), with clade A over-represented in Norwegian CC131 isolates (75 [27·0%] of 278) compared with the UK study (8 [5·4%] of 147 isolates). INTERPRETATION: The early and sustained establishment of predominantly antimicrobial susceptible CC131 clade A isolates, relative to multidrug resistant clade C2 isolates, suggests that resistance is not necessary for clonal success. However, even in the low antibiotic use setting of Norway, resistance to important antimicrobial classes has rapidly been selected for in CC131 clade A isolates. This study shows the importance of genomic surveillance in uncovering the complex ecology underlying multidrug resistance dissemination and competition, which have implications for the design of strategies and interventions to control the spread of high-risk multidrug resistant clones. FUNDING: Trond Mohn Foundation, European Research Council, Marie Sklodowska-Curie Actions, and the Wellcome Trust.


Assuntos
Infecções por Escherichia coli , Sepse , Antibacterianos/farmacologia , Estudos de Coortes , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Fluoroquinolonas/farmacologia , Humanos , Estudos Longitudinais , Metagenômica
2.
iScience ; 23(7): 101334, 2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32674058

RESUMO

Cardiac stimulation via sympathetic neurons can potentially trigger arrhythmias. We present approaches to study neuron-cardiomyocyte interactions involving optogenetic selective probing and all-optical electrophysiology to measure activity in an automated fashion. Here we demonstrate the utility of optical interrogation of sympathetic neurons and their effects on macroscopic cardiomyocyte network dynamics to address research targets such as the effects of adrenergic stimulation via the release of neurotransmitters, the effect of neuronal numbers on cardiac behavior, and the applicability of optogenetics in mechanistic in vitro studies. As arrhythmias are emergent behaviors that involve the coordinated activity of millions of cells, we image at macroscopic scales to capture complex dynamics. We show that neurons can both decrease and increase wave stability and re-entrant activity in culture depending on their induced activity-a finding that may help us understand the often conflicting results seen in experimental and clinical studies.

4.
Sci Rep ; 6: 38898, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27966588

RESUMO

Many therapeutic interventions in disease states of heightened cardiac sympathetic activity are targeted to the myocytes. However, emerging clinical data highlights a dominant role in disease progression by the neurons themselves. Here we describe a novel experimental model of the peripheral neuro-cardiac axis to study the neuron's ability to drive a myocyte cAMP phenotype. We employed a co-culture of neonatal ventricular myocytes and sympathetic stellate neurons from normal (WKY) and pro-hypertensive (SHR) rats that are sympathetically hyper-responsive and measured nicotine evoked cAMP responses in the myocytes using a fourth generation FRET cAMP sensor. We demonstrated the dominant role of neurons in driving the myocyte ß-adrenergic phenotype, where SHR cultures elicited heightened myocyte cAMP responses during neural activation. Moreover, cross-culturing healthy neurons onto diseased myocytes rescued the diseased cAMP response of the myocyte. Conversely, healthy myocytes developed a diseased cAMP response if diseased neurons were introduced. Our results provide evidence for a dominant role played by the neuron in driving the adrenergic phenotype seen in cardiovascular disease. We also highlight the potential of using healthy neurons to turn down the gain of neurotransmission, akin to a smart pre-synaptic ß-blocker.


Assuntos
AMP Cíclico/metabolismo , Hipertensão/metabolismo , Miócitos Cardíacos/metabolismo , Neurônios/metabolismo , Sistema Nervoso Simpático/metabolismo , Transmissão Sináptica , Animais , Técnicas de Cocultura , Hipertensão/patologia , Miócitos Cardíacos/patologia , Neurônios/patologia , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sistema Nervoso Simpático/patologia
5.
J Neurosci ; 36(33): 8562-73, 2016 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-27535905

RESUMO

UNLABELLED: Hypertension is associated with impaired nitric oxide (NO)-cyclic nucleotide (CN)-coupled intracellular calcium (Ca(2+)) homeostasis that enhances cardiac sympathetic neurotransmission. Because neuronal membrane Ca(2+) currents are reduced by NO-activated S-nitrosylation, we tested whether CNs affect membrane channel conductance directly in neurons isolated from the stellate ganglia of spontaneously hypertensive rats (SHRs) and their normotensive controls. Using voltage-clamp and cAMP-protein kinase A (PKA) FRET sensors, we hypothesized that impaired CN regulation provides a direct link to abnormal signaling of neuronal calcium channels in the SHR and that targeting cGMP can restore the channel phenotype. We found significantly larger whole-cell Ca(2+) currents from diseased neurons that were largely mediated by the N-type Ca(2+) channel (Cav2.2). Elevating cGMP restored the SHR Ca(2+) current to levels seen in normal neurons that were not affected by cGMP. cGMP also decreased cAMP levels and PKA activity in diseased neurons. In contrast, cAMP-PKA activity was increased in normal neurons, suggesting differential switching in phosphodiesterase (PDE) activity. PDE2A inhibition enhanced the Ca(2+) current in normal neurons to a conductance similar to that seen in SHR neurons, whereas the inhibitor slightly decreased the current in diseased neurons. Pharmacological evidence supported a switching from cGMP acting via PDE3 in control neurons to PDE2A in SHR neurons in the modulation of the Ca(2+) current. Our data suggest that a disturbance in the regulation of PDE-coupled CNs linked to N-type Ca(2+) channels is an early hallmark of the prohypertensive phenotype associated with intracellular Ca(2+) impairment underpinning sympathetic dysautonomia. SIGNIFICANCE STATEMENT: Here, we identify dysregulation of cyclic-nucleotide (CN)-linked neuronal Ca(2+) channel activity that could provide the trigger for the enhanced sympathetic neurotransmission observed in the prohypertensive state. Furthermore, we provide evidence that increasing cGMP rescues the channel phenotype and restores ion channel activity to levels seen in normal neurons. We also observed CN cross-talk in sympathetic neurons that may be related to a differential switching in phosphodiesterase activity. The presence of these early molecular changes in asymptomatic, prohypertensive animals could facilitate the identification of novel therapeutic targets with which to modulate intracellular Ca(2+) Turning down the gain of sympathetic hyperresponsiveness in cardiovascular disease associated with sympathetic dysautonomia would have significant therapeutic utility.


Assuntos
Canais de Cálcio/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Neurônios/fisiologia , Sistema Nervoso Simpático/fisiopatologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Células Cultivadas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Neurônios/efeitos dos fármacos , Fenótipo , Proteína Quinase C/metabolismo , Proteínas Quinases , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismo
6.
Hypertension ; 65(6): 1288-1297, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25916729

RESUMO

Genome-wide association studies implicate a variant in the neuronal nitric oxide synthase adaptor protein (CAPON) in electrocardiographic QT variation and sudden cardiac death. Interestingly, nitric oxide generated by neuronal NO synthase-1 reduces norepinephrine release; however, this pathway is downregulated in animal models of cardiovascular disease. Because sympathetic hyperactivity can trigger arrhythmia, is this neural phenotype linked to CAPON dysregulation? We hypothesized that CAPON resides in cardiac sympathetic neurons and is a part of the prediseased neuronal phenotype that modulates calcium handling and neurotransmission in dysautonomia. CAPON expression was significantly reduced in the stellate ganglia of spontaneously hypertensive rats before the development of hypertension compared with age-matched Wistar-Kyoto rats. The neuronal calcium current (ICa; n=8) and intracellular calcium transient ([Ca(2+)]i; n=16) were significantly larger in the spontaneously hypertensive rat than in Wistar-Kyoto rat (P<0.05). A novel noradrenergic specific vector (Ad.PRSx8-mCherry/CAPON) significantly upregulated CAPON expression, NO synthase-1 activity, and cGMP in spontaneously hypertensive rat neurons without altering NO synthase-1 levels. Neuronal ICa and [Ca(2+)]i were significantly reduced after CAPON transduction compared with the empty vector. In addition, Ad.PRSx8-mCherry/CAPON also reduced (3)H-norepinephrine release from spontaneously hypertensive rat atria (n=7). NO synthase-1 inhibition (AAAN, 10 µmol/L; n=6) reversed these effects compared with the empty virus alone. In conclusion, targeted upregulation of CAPON decreases cardiac sympathetic hyperactivity. Moreover, dysregulation of this adaptor protein in sympathetic neurons might further amplify the negative cardiac electrophysiological properties seen with CAPON mutations.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cálcio/metabolismo , Hipertensão/fisiopatologia , Óxido Nítrico/metabolismo , Norepinefrina/biossíntese , Transmissão Sináptica/genética , Análise de Variância , Animais , Western Blotting , GMP Cíclico/metabolismo , Modelos Animais de Doenças , Imunofluorescência , Técnicas de Transferência de Genes , Estudo de Associação Genômica Ampla , Hipertensão/genética , Masculino , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Disautonomias Primárias/genética , Disautonomias Primárias/fisiopatologia , Distribuição Aleatória , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Transmissão Sináptica/fisiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA