Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 122(45): 8809-8818, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30354137

RESUMO

The photoinduced dynamics of thiophene and 2,5-dimethylthiophene (2,5-DMT) were investigated upon excitation at 200 and 255 nm (2,5-DMT only) using time-resolved photoelectron spectroscopy and compared with results from ab initio coupled cluster calculations. For thiophene, depopulation of the initially excited B2(π3π4*) state to the lower-lying A1(π2π4*) state occurs within 25 ± 20 fs, with a subsequent bifurcation into a ring-puckering channel and a ring-opening channel with lifetimes of 80 ± 20 and 450 ± 50 fs, respectively. For 2,5-DMT, the dynamics following excitation at 200 nm is described by a monoexponential decay with a time constant of 120 ± 20 fs, while that following excitation at 255 nm is best fit by a biexponential decay with time constants of 115 ± 20 fs and 15 ± 3 ps, respectively. The fast signal observed after excitation of 2,5-DMT is assigned to the ring-opening channel, which is favored with respect to thiophene due to a lower excited-state barrier along the ring-opening coordinate and an increased inertia toward the ring-puckering channel. Coupled cluster calculations have been undertaken to compare the relaxation dynamics of thiophene to thiazole and isothiazole. For the latter two molecules, we find a strong gradient along the ring-opening coordinate in the Franck-Condon region of the initially populated ππ* state and predict that ring-opening is the dominating relaxation channel after photoexcitation. We use the extracted information for a comparison of the thiophene dynamics with the light-induced processes observed in other five-membered heterocyclic molecules.

2.
Phys Chem Chem Phys ; 20(8): 5942-5951, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29423491

RESUMO

The solvent-dependent excited state behavior of the molecular push-pull system 2-diethylamino-7-nitrofluorene has been explored using femtosecond transient absorption spectroscopy in combination with density functional theory calculations. Several excited state minima have been identified computationally, all possessing significant intramolecular charge transfer character. The experimentally observed dual fluorescence is suggested to arise from a planar excited state minimum and another minimum reached by twisting of the aryl-nitrogen bond of the amino group. The majority of the excited state population, however, undergo non-radiative transitions and potential excited state deactivation pathways are assessed in the computational investigation. A third excited state conformer, characterized by twisting around the aryl-nitrogen bond of the nitro group, is reasoned to be responsible for the majority of the non-radiative decays and a crossing between the excited state and ground state is localized. Additionally, ultrafast intersystem crossing is observed in the apolar solvent cyclohexane and rationalized to occur via an El-Sayed assisted transition from one of the identified excited state minima. The solvent thus determines more than just the fluorescence lifetime and shapes the potential energy landscape, thereby dictating the available excited state pathways.

3.
Phys Chem Chem Phys ; 18(35): 24484-97, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27539710

RESUMO

The photoinduced processes of methyl formate and methyl acetate have been probed by femtosecond time-resolved mass spectrometry and photoelectron spectroscopy experiments supported by quantum chemical calculations. Upon excitation to a vibrationally hot S1 state both molecules were found to relax away from the Franck-Condon geometry faster than the cross-correlation (≈170 fs). During relaxation of the S1 surface intersystem crossing to the triplet manifold is possible via the T2 state which enables an El-Sayed allowed transition. The time-resolved photoelectron spectra show indications of a triplet state formed on an ultrafast timescale. We suggest that the ultrafast timescale of the intersystem crossing process is possible due to the shape of the potential energy surface directing and restricting the dynamics along the carbonyl group de-planarization coordinate, where an El-Sayed allowed intersystem crossing is possible at all times, and where the S1 and T2 states are nearly iso-energetic all the way along the reaction coordinate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA