Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Med ; 13(10): e7287, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38770637

RESUMO

Although the development of immunotherapies has been revolutionary in the treatment of several cancers, many cancer types remain unresponsive to immune-based treatment and are largely managed by chemotherapy drugs. However, chemotherapeutics are not infallible and are frequently rendered ineffective as resistance develops from prolonged exposure. Recent investigations have indicated that some chemotherapy drugs have additional functions beyond their normative cytotoxic capacity and are in fact immune-modifying agents. Of the pharmaceuticals with identified immune-editing properties, gemcitabine is well-studied and of interest to clinicians and scientists alike. Gemcitabine is a chemotherapy drug approved for the treatment of multiple cancers, including breast, lung, pancreatic, and ovarian. Because of its broad applications, relatively low toxicity profile, and history as a favorable combinatory partner, there is promise in the recharacterization of gemcitabine in the context of the immune system. Such efforts may allow the identification of suitable immunotherapeutic combinations, wherein gemcitabine can be used as a priming agent to improve immunotherapy efficacy in traditionally insensitive cancers. This review looks to highlight documented immunomodulatory abilities of one of the most well-known chemotherapy agents, gemcitabine, relating to its influence on cells and proteins of the immune system.


Assuntos
Antimetabólitos Antineoplásicos , Gencitabina , Agentes de Imunomodulação , Neoplasias , Animais , Humanos , Antimetabólitos Antineoplásicos/uso terapêutico , Antimetabólitos Antineoplásicos/farmacologia , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Agentes de Imunomodulação/uso terapêutico , Agentes de Imunomodulação/farmacologia , Imunomodulação/efeitos dos fármacos , Imunoterapia/métodos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia
2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542184

RESUMO

Pancreatic cancer is a lethal disease, harboring a five-year overall survival rate of only 13%. Current treatment approaches thus require modulation, with attention shifting towards liberating the stalled efficacy of immunotherapies. Select chemotherapy drugs which possess inherent immune-modifying behaviors could revitalize immune activity against pancreatic tumors and potentiate immunotherapeutic success. In this study, we characterized the influence of gemcitabine, a chemotherapy drug approved for the treatment of pancreatic cancer, on tumor antigen presentation by human leukocyte antigen class I (HLA-I). Gemcitabine increased pancreatic cancer cells' HLA-I mRNA transcripts, total protein, surface expression, and surface stability. Temperature-dependent assay results indicated that the increased HLA-I stability may be due to reduced binding of low affinity peptides. Mass spectrometry analysis confirmed changes in the HLA-I-presented peptide pool post-treatment, and computational predictions suggested improved affinity and immunogenicity of peptides displayed solely by gemcitabine-treated cells. Most of the gemcitabine-exclusive peptides were derived from unique source proteins, with a notable overrepresentation of translation-related proteins. Gemcitabine also increased expression of select immunoproteasome subunits, providing a plausible mechanism for its modulation of the HLA-I-bound peptidome. Our work supports continued investigation of immunotherapies, including peptide-based vaccines, to be used with gemcitabine as new combination treatment modalities for pancreatic cancer.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Humanos , Desoxicitidina/uso terapêutico , Apresentação de Antígeno , Neoplasias Pancreáticas/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Peptídeos , Antígenos de Neoplasias/uso terapêutico , Hormônios Pancreáticos , Linhagem Celular Tumoral
4.
PLoS One ; 17(9): e0273518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36126055

RESUMO

The histone deacetylase (HDAC) inhibitor vorinostat, used with gemcitabine and other therapies, has been effective in treatment of experimental models of pancreatic cancer. In this study, we demonstrated that M344, an HDAC inhibitor, is efficacious against pancreatic cancer in vitro and in vivo, alone or with gemcitabine. By 24 hours post-treatment, M344 augments the population of pancreatic cancer cells in G1, and at a later time point (48 hours) it increases apoptosis. M344 inhibits histone H3 deacetylation and slows pancreatic cancer cell proliferation better than vorinostat, and it does not decrease the viability of a non-malignant cell line more than vorinostat. M344 also elevates pancreatic cancer cell major histocompatibility complex (MHC) class I molecule expression, potentially increasing the susceptibility of pancreatic cancer cells to T cell lysis. Taken together, our findings support further investigation of M344 as a pancreatic cancer treatment.


Assuntos
Inibidores de Histona Desacetilases , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Ácidos Hidroxâmicos/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Vorinostat/farmacologia , Neoplasias Pancreáticas
5.
Semin Cancer Biol ; 86(Pt 2): 14-27, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36041672

RESUMO

Pancreatic cancer (PC) has exceptionally high mortality due to ineffective treatment strategies. Immunotherapy, which mobilizes the immune system to fight against cancer, has been proven successful in multiple cancers; however, its application in PC has met with limited success. In this review, we articulated that the pancreatic tumor microenvironment is immuno-suppressive with extensive infiltration by M2-macrophages and myeloid-derived suppressive cells but low numbers of cytotoxic T-cells. In addition, low mutational load and poor antigen processing, presentation, and recognition contribute to the limited response to immunotherapy in PC. Immune checkpoints, the critical targets for immunotherapy, have high expression in PC and stromal cells, regulated by tumor microenvironmental milieu (cytokine and metabolites) and cell-intrinsic mechanisms (epigenetic regulation, oncogenic signaling, and post-translational modifications). Combining immunotherapy with modulators of the tumor microenvironment may facilitate the development of novel therapeutic regimens to manage PC.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias Pancreáticas , Humanos , Epigênese Genética , Neoplasias Pancreáticas/patologia , Imunoterapia , Microambiente Tumoral , Neoplasias Pancreáticas
6.
Immunol Res ; 70(3): 371-391, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35303241

RESUMO

Pancreatic cancer is one of the deadliest neoplasms, with a dismal 5-year survival rate of only 10%. The ability of pancreatic cancer cells to evade the immune system hinders an anti-tumor response and contributes to the poor survival rate. Downregulation of major histocompatibility complex (MHC) class I cell-surface expression can aid in immune evasion by preventing endogenous tumor antigens from being presented to cytotoxic T cells. Earlier studies suggested that epidermal growth factor receptor (EGFR) signaling can decrease MHC class I expression on certain cancer cell types. However, even though erlotinib (a tyrosine kinase inhibitor that targets EGFR) is an approved drug for advanced pancreatic cancer treatment, the impact of EGFR inhibition or stimulation on pancreatic cancer cell MHC class I surface expression has not previously been analyzed. In this current study, we discovered that EGFR affects MHC class I mRNA and protein expression by human pancreatic cancer cell lines. We demonstrated that cell-surface MHC class I expression is downregulated upon EGFR activation, and the MHC class I level at the surface is elevated following EGFR inhibition. Furthermore, we found that EGFR associates with MHC class I molecules. By defining a role in pancreatic cancer cells for activated EGFR in reducing MHC class I expression and by revealing that EGFR inhibitors can boost MHC class I expression, our work supports further investigation of combined usage of EGFR inhibitors with immunotherapies against pancreatic cancer.


Assuntos
Receptores ErbB , Neoplasias Pancreáticas , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Complexo Principal de Histocompatibilidade , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas
7.
Cancers (Basel) ; 13(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810510

RESUMO

In the United States, pancreatic cancer is a major cause of cancer-related deaths. Although substantial efforts have been made to understand pancreatic cancer biology and improve therapeutic efficacy, patients still face a bleak chance of survival. A greater understanding of pancreatic cancer development and the identification of novel treatment targets are desperately needed. Our analysis of gene expression data from patient samples showed an increase in amyloid precursor-like protein 2 (APLP2) expression within primary tumor epithelium relative to pancreatic intraepithelial neoplasia (PanIN) epithelial cells. Augmented expression of APLP2 in primary tumors compared to adjacent stroma was also observed. Genetically engineered mouse models of spontaneous pancreatic ductal adenocarcinoma were used to investigate APLP2's role in cancer development. We found that APLP2 expression intensifies significantly during pancreatic cancer initiation and progression in the LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) mouse model, as shown by immunohistochemistry analysis. In studies utilizing pancreas-specific heterozygous and homozygous knockout of APLP2 in the KPC mouse model background, we observed significantly prolonged survival and reduced metastatic progression of pancreatic cancer. These results demonstrate the importance of APLP2 in pancreatic cancer initiation and metastasis and indicate that APLP2 should be considered a potential therapeutic target for this disease.

8.
Cancer Metastasis Rev ; 40(2): 377-389, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33682030

RESUMO

The development of cancer stems from genetic instability and changes in genomic sequences, and hence, the heterogeneity exhibited by tumors is integral to the nature of cancer itself. Tumor heterogeneity can be further altered by factors that are not cancer cell intrinsic, i.e., by the microenvironment, including the patient's immune responses to tumors and administered therapies (immunotherapies, chemotherapies, and/or radiation therapies). The focus of this review is the impact of tumor heterogeneity on the interactions between immune cells and the tumor, taking into account that heterogeneity can exist at several levels. These levels include heterogeneity within an individual tumor, within an individual patient (particularly between the primary tumor and metastatic lesions), among the subtypes of a specific type of cancer, or within cancers that originate from different tissues. Because of the potential for immunity (either the natural immune system or via immunotherapeutics) to halt the progression of cancer, major clinical significance exists in understanding the impact of tumor heterogeneity on the associations between immune cells and tumor cells. Increased knowledge of why, whether, and how immune-tumor interactions occur provides the means to guide these interactions and improve outcomes for patients.


Assuntos
Neoplasias/genética , Neoplasias/imunologia , Animais , Citocinas/imunologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Humanos , Imunoterapia/métodos , Neoplasias/patologia , Neoplasias/terapia , Neutrófilos/imunologia , Neutrófilos/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
9.
J STEM Outreach ; 4(4)2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35814349

RESUMO

In response to the SARS-CoV-2 pandemic, a cancer research education program at the University of Nebraska Medical Center designed for Native American middle school, high school and undergraduate students adapted activities to be delivered online. There are considerable challenges to adapting in-person science programming to online delivery that can impact overall effectiveness. These challenges are further exacerbated when the cognate student population also faces significant disparities in health, wealth, and educational outcomes. We encountered both disadvantages and advantages in transitioning programming to online virtual formats. Challenges faced in delivering our programming during the pandemic included varied online accessibility, peripheral stressors, and disconnection to places and people. Despite these challenges, we found several benefits in remote delivery, some of which have alleviated barriers to program participation for Native American students. Some successes achieved by transitioning to fully remote programming included increased program reach, sustainability, and cultural relevancy. In this overview of the implementation of four online programs at the middle school, high school, and undergraduate levels, we highlight the challenges and successes experienced. Through this program description, we aim to provide insight into potential strategies to improve program delivery designed for Native American students during the SARS-CoV-2 pandemic and beyond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA