Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Europace ; 24(3): 511-522, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34601592

RESUMO

AIM: Long QT syndrome (LQTS) is a cardiac channelopathy predisposing to ventricular arrhythmias and sudden cardiac death. Since current therapies often fail to prevent arrhythmic events in certain LQTS subtypes, new therapeutic strategies are needed. Docosahexaenoic acid (DHA) is a polyunsaturated fatty acid, which enhances the repolarizing IKs current. METHODS AND RESULTS: We investigated the effects of DHA in wild type (WT) and transgenic long QT Type 1 (LQT1; loss of IKs), LQT2 (loss of IKr), LQT5 (reduction of IKs), and LQT2-5 (loss of IKr and reduction of IKs) rabbits. In vivo ECGs were recorded at baseline and after 10 µM/kg DHA to assess changes in heart-rate corrected QT (QTc) and short-term variability of QT (STVQT). Ex vivo monophasic action potentials were recorded in Langendorff-perfused rabbit hearts, and action potential duration (APD75) and triangulation were assessed. Docosahexaenoic acid significantly shortened QTc in vivo only in WT and LQT2 rabbits, in which both α- and ß-subunits of IKs-conducting channels are functionally intact. In LQT2, this led to a normalization of QTc and of its short-term variability. Docosahexaenoic acid had no effect on QTc in LQT1, LQT5, and LQT2-5. Similarly, ex vivo, DHA shortened APD75 in WT and normalized it in LQT2, and additionally decreased AP triangulation in LQT2. CONCLUSIONS: Docosahexaenoic acid exerts a genotype-specific beneficial shortening/normalizing effect on QTc and APD75 and reduces pro-arrhythmia markers STVQT and AP triangulation through activation of IKs in LQT2 rabbits but has no effects if either α- or ß-subunits to IKs are functionally impaired. Docosahexaenoic acid could represent a new genotype-specific therapy in LQT2.


Assuntos
Ácidos Docosa-Hexaenoicos , Síndrome do QT Longo , Animais , Animais Geneticamente Modificados , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/prevenção & controle , Ácidos Docosa-Hexaenoicos/farmacologia , Eletrocardiografia , Genótipo , Humanos , Síndrome do QT Longo/tratamento farmacológico , Síndrome do QT Longo/genética , Coelhos
2.
Acta Physiol (Oxf) ; 225(2): e13186, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30184322

RESUMO

AIM: The IKs channel is important for termination of the cardiac action potential. Hundreds of loss-of-function mutations in the IKs channel reduce the K+ current and, thereby, delay the repolarization of the action potential, causing Long QT Syndrome. Long QT predisposes individuals to Torsades de Pointes which can lead to ventricular fibrillation and sudden death. Polyunsaturated fatty acids (PUFAs) are potential therapeutics for Long QT Syndrome, as they affect IKs channels. However, it is unclear which properties of PUFAs are essential for their effects on IKs channels. METHODS: To understand how PUFAs influence IKs channel activity, we measured effects on IKs current by two-electrode voltage clamp while changing different properties of the hydrocarbon tail. RESULTS: There was no, or weak, correlation between the tail length or number of double bonds in the tail and the effects on or apparent binding affinity for IKs channels. However, we found a strong correlation between the positions of the double bonds relative to the head group and effects on IKs channels. CONCLUSION: Polyunsaturated fatty acids with double bonds closer to the head group had higher apparent affinity for IKs channels and increased IKs current more; shifting the bonds further away from the head group reduced apparent binding affinity for and effects on the IKs current. Interestingly, we found that ω-6 and ω-9 PUFAs, with the first double bond closer to the head group, left-shifted the voltage dependence of activation the most. These results allow for informed design of new therapeutics targeting IKs channels in Long QT Syndrome.


Assuntos
Ácidos Graxos Ômega-6/farmacologia , Ácidos Graxos Insaturados/farmacologia , Canal de Potássio KCNQ1/agonistas , Canais de Potássio de Abertura Dependente da Tensão da Membrana/agonistas , Potenciais de Ação , Animais , Células Cultivadas , Ácidos Graxos Ômega-6/química , Ácidos Graxos Insaturados/química , Humanos , Canal de Potássio KCNQ1/metabolismo , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Xenopus laevis
3.
J Neurosci ; 27(11): 2943-7, 2007 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-17360917

RESUMO

Excitatory amino acid transporters (EAATs) use sodium and potassium gradients to remove glutamate from the synapse and surrounding extracellular space, thereby sustaining efficient synaptic transmission and maintaining extracellular glutamate concentrations at subneurotoxic levels. In addition to sodium-driven glutamate uptake, EAATs also mediate a glutamate-activated chloride conductance via a channel-like mechanism. EAATs are trimeric proteins and are thought to comprise three identical subunits. Previous studies have shown that the sodium-driven uptake of glutamate occurs independently in each of the three subunits. In contrast, a recent study reports high Hill coefficients for the activation of EAAT anion currents by glutamate and suggests that the subunits function cooperatively in gating the chloride conductance. In the present work, we find that the Hill coefficient for the activation of the anion current by glutamate is approximately 1 in both EAAT3 and EAAT4. Furthermore, we also used fluorescent labeling and inactivation correlation on EAAT3 and EAAT4 to determine whether the glutamate-activated chloride conductance is gated independently or cooperatively by the transporters. We found that both glutamate uptake currents and glutamate-activated chloride currents are mediated independently by each subunit of an EAAT multimer. It has been suggested that EAAT subtypes with particularly large anion conductances can directly influence the excitability of presynaptic terminals in certain neurons. Thus, the finding that the anion conductance is gated independently, rather than cooperatively, is important because it significantly alters predictions of the influence that EAAT-mediated anion currents will have on synaptic transmission at low glutamate concentrations.


Assuntos
Transportador 3 de Aminoácido Excitatório/fisiologia , Transportador 4 de Aminoácido Excitatório/fisiologia , Ácido Glutâmico/farmacologia , Ativação do Canal Iônico/fisiologia , Subunidades Proteicas/fisiologia , Animais , Linhagem Celular , Transportador 3 de Aminoácido Excitatório/agonistas , Transportador 4 de Aminoácido Excitatório/agonistas , Feminino , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Valor Preditivo dos Testes , Receptores de Glutamato/fisiologia , Canais de Ânion Dependentes de Voltagem/agonistas , Canais de Ânion Dependentes de Voltagem/fisiologia , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA