Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 11(523)2019 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-31852802

RESUMO

Accurate medical recordkeeping is a major challenge in many low-resource settings where well-maintained centralized databases do not exist, contributing to 1.5 million vaccine-preventable deaths annually. Here, we present an approach to encode medical history on a patient using the spatial distribution of biocompatible, near-infrared quantum dots (NIR QDs) in the dermis. QDs are invisible to the naked eye yet detectable when exposed to NIR light. QDs with a copper indium selenide core and aluminum-doped zinc sulfide shell were tuned to emit in the NIR spectrum by controlling stoichiometry and shelling time. The formulation showing the greatest resistance to photobleaching after simulated sunlight exposure (5-year equivalence) through pigmented human skin was encapsulated in microparticles for use in vivo. In parallel, microneedle geometry was optimized in silico and validated ex vivo using porcine and synthetic human skin. QD-containing microparticles were then embedded in dissolvable microneedles and administered to rats with or without a vaccine. Longitudinal in vivo imaging using a smartphone adapted to detect NIR light demonstrated that microneedle-delivered QD patterns remained bright and could be accurately identified using a machine learning algorithm 9 months after application. In addition, codelivery with inactivated poliovirus vaccine produced neutralizing antibody titers above the threshold considered protective. These findings suggest that intradermal QDs can be used to reliably encode information and can be delivered with a vaccine, which may be particularly valuable in the developing world and open up new avenues for decentralized data storage and biosensing.


Assuntos
Pontos Quânticos , Pele/metabolismo , Vacinação/métodos , Animais , Humanos , Ratos , Sulfetos/química , Suínos , Compostos de Zinco/química
2.
Biomed Opt Express ; 4(2): 271-86, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23411913

RESUMO

We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction.

3.
Biomed Opt Express ; 3(5): 1006-24, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22567593

RESUMO

A parametric level set method (PaLS) is implemented for image reconstruction for hyperspectral diffuse optical tomography (DOT). Chromophore concentrations and diffusion amplitude are recovered using a linearized Born approximation model and employing data from over 100 wavelengths. The images to be recovered are taken to be piecewise constant and a newly introduced, shape-based model is used as the foundation for reconstruction. The PaLS method significantly reduces the number of unknowns relative to more traditional level-set reconstruction methods and has been show to be particularly well suited for ill-posed inverse problems such as the one of interest here. We report on reconstructions for multiple chromophores from simulated and experimental data where the PaLS method provides a more accurate estimation of chromophore concentrations compared to a pixel-based method.

4.
Biomed Opt Express ; 2(4): 946-65, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21483616

RESUMO

We explore the development and performance of algorithms for hyperspectral diffuse optical tomography (DOT) for which data from hundreds of wavelengths are collected and used to determine the concentration distribution of chromophores in the medium under investigation. An efficient method is detailed for forming the images using iterative algorithms applied to a linearized Born approximation model assuming the scattering coefficient is spatially constant and known. The L-surface framework is employed to select optimal regularization parameters for the inverse problem. We report image reconstructions using 126 wavelengths with estimation error in simulations as low as 0.05 and mean square error of experimental data of 0.18 and 0.29 for ink and dye concentrations, respectively, an improvement over reconstructions using fewer specifically chosen wavelengths.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA