RESUMO
In the originally published version of this Article, financial support was not fully acknowledged. The sentence "KS was supported by the 'Biomedical Research Program' funds at Weill Cornell Medicine in Qatar, a program funded by the Qatar Foundation" has been added to the acknowledgement section in both the PDF and HTML versions of the Article.
RESUMO
Identifying genetic variants associated with circulating protein concentrations (protein quantitative trait loci; pQTLs) and integrating them with variants from genome-wide association studies (GWAS) may illuminate the proteome's causal role in disease and bridge a knowledge gap regarding SNP-disease associations. We provide the results of GWAS of 71 high-value cardiovascular disease proteins in 6861 Framingham Heart Study participants and independent external replication. We report the mapping of over 16,000 pQTL variants and their functional relevance. We provide an integrated plasma protein-QTL database. Thirteen proteins harbor pQTL variants that match coronary disease-risk variants from GWAS or test causal for coronary disease by Mendelian randomization. Eight of these proteins predict new-onset cardiovascular disease events in Framingham participants. We demonstrate that identifying pQTLs, integrating them with GWAS results, employing Mendelian randomization, and prospectively testing protein-trait associations holds potential for elucidating causal genes, proteins, and pathways for cardiovascular disease and may identify targets for its prevention and treatment.
Assuntos
Proteínas Sanguíneas/genética , Doenças Cardiovasculares/genética , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla , Locos de Características Quantitativas/genética , Adulto , Doenças Cardiovasculares/metabolismo , Mapeamento Cromossômico , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Transdução de Sinais/genéticaRESUMO
BACKGROUND: Although epidemiological studies have reported positive associations between circulating urate levels and cardiometabolic diseases, causality remains uncertain. OBJECTIVES: Through a Mendelian randomization approach, we assessed whether serum urate levels are causally relevant in type 2 diabetes mellitus (T2DM), coronary heart disease (CHD), ischemic stroke, and heart failure (HF). METHODS: This study investigated 28 single nucleotide polymorphisms known to regulate serum urate levels in association with various vascular and nonvascular risk factors to assess pleiotropy. To limit genetic confounding, 14 single nucleotide polymorphisms exclusively associated with serum urate levels were used in a genetic risk score to assess associations with the following cardiometabolic diseases (cases/controls): T2DM (26,488/83,964), CHD (54,501/68,275), ischemic stroke (14,779/67,312), and HF (4,526/18,400). As a positive control, this study also investigated our genetic instrument in 3,151 gout cases and 68,350 controls. RESULTS: Serum urate levels, increased by 1 SD due to the genetic score, were not associated with T2DM, CHD, ischemic stroke, or HF. These results were in contrast with previous prospective studies that did observe increased risks of these 4 cardiometabolic diseases for an equivalent increase in circulating urate levels. However, a 1 SD increase in serum urate levels due to the genetic score was associated with increased risk of gout (odds ratio: 5.84; 95% confidence interval: 4.56 to 7.49), which was directionally consistent with previous observations. CONCLUSIONS: Evidence from this study does not support a causal role of circulating serum urate levels in T2DM, CHD, ischemic stroke, or HF. Decreasing serum urate levels may not translate into risk reductions for cardiometabolic conditions.
Assuntos
Doença das Coronárias/genética , Diabetes Mellitus Tipo 2/genética , Análise da Randomização Mendeliana/métodos , Polimorfismo de Nucleotídeo Único , Medição de Risco/métodos , Acidente Vascular Cerebral/genética , Ácido Úrico/sangue , Doença das Coronárias/sangue , Doença das Coronárias/epidemiologia , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/epidemiologia , Saúde Global , Humanos , Morbidade/tendências , Razão de Chances , Prognóstico , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/epidemiologiaRESUMO
Oxidative stress and inflammation are major contributors to accelerated age-related relative telomere length (RTL) shortening. Both conditions are strongly linked to leptin and adiponectin, the most prominent adipocyte-derived protein hormones. As high leptin levels and low levels of adiponectin have been implicated in inflammation, one expects adiponectin to be positively associated with RTL while leptin should be negatively associated. Within the ENGAGE consortium, we investigated the association of RTL with adiponectin and leptin in seven independent cohorts with a total of 11,448 participants. We performed partial correlation analysis on Z-transformed RTL and LN-transformed leptin/adiponectin, adjusting for age and sex. In extended models we adjusted for body mass index (BMI) and C-reactive protein (CRP). Adiponectin showed a borderline significant association with RTL. This appeared to be determined by a single study and when the outlier study was removed, this association disappeared. The association between RTL and leptin was highly significant (r = -0.05; p = 1.81 × 10(-7)). Additional adjustment for BMI or CRP did not change the results. Sex-stratified analysis revealed no difference between men and women. Our study suggests that high leptin levels are associated with short RTL.