Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Zool ; 13: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26870151

RESUMO

BACKGROUND: Hibernation has been a key area of research for several decades, essentially in small mammals in the laboratory, yet we know very little about what triggers or ends it in the wild. Do climatic factors, an internal biological clock, or physiological processes dominate? Using state-of-the-art tracking and monitoring technology on fourteen free-ranging brown bears over three winters, we recorded movement, heart rate (HR), heart rate variability (HRV), body temperature (Tb), physical activity, ambient temperature (TA), and snow depth to identify the drivers of the start and end of hibernation. We used behavioral change point analyses to estimate the start and end of hibernation and convergent cross mapping to identify the causal interactions between the ecological and physiological variables over time. RESULTS: To our knowledge, we have built the first chronology of both ecological and physiological events from before the start to the end of hibernation in the field. Activity, HR, and Tb started to drop slowly several weeks before den entry. Bears entered the den when snow arrived and when ambient temperature reached 0 °C. HRV, taken as a proxy of sympathetic nervous system activity, dropped dramatically once the bear entered the den. This indirectly suggests that denning is tightly coupled to metabolic suppression. During arousal, the unexpected early rise in Tb (two months before den exit) was driven by TA, but was independent of HRV. The difference between Tb and TA decreased gradually suggesting that bears were not thermoconforming. HRV increased only three weeks before exit, indicating that late activation of the sympathetic nervous system likely finalized restoration of euthermic metabolism. Interestingly, it was not until TA reached the presumed lower critical temperature, likely indicating that the bears were seeking thermoneutrality, that they exited the den. CONCLUSIONS: We conclude that brown bear hibernation was initiated primarily by environmental cues, but terminated by physiological cues.

2.
Ann Thorac Surg ; 70(5): 1607-14, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11093495

RESUMO

BACKGROUND: Isolated heart models separate cardiac characteristics from systemic characteristics with subsequent findings used in cardiac research, including responses to pharmacologic, mechanical, and electrical components. The model objective was to develop the ability to represent in situ physiologic cardiac function ex vivo. METHODS: Swine hearts were chosen over rat or guinea pig models due to their notably greater anatomical and physiologic similarities to humans. An in vitro apparatus was designed to work all four chambers under simulated in situ physiologic conditions. Using standard cardiac surgical techniques, 12 porcine hearts (mean weight 331 +/- 18 g) were explanted into the apparatus. Preload and afterload resistances simulated in situ input and output physiologic conditions. Hemodynamic characterizations, including cardiac output, max +/- dP/dt, and heart rate, were used to determine in situ function leading to explantation (prethoracic operation, postmedial sternotomy, and postperidectomy) and during in vitro function (t = 0, 60, 120, and 240 minutes). RESULTS: In vitro performance decayed with time, with statistical differences from base line (t = 0) function at t = 240 minutes (p > 0.05). CONCLUSIONS: An isolation and in vitro explantation protocol has been improved to aid in the study of isolated cardiac responses, and to determine cardiac hemodynamic function during open chest operation, transplantation, and in vitro reanimation with a crystalloid perfusate. The resulting model offers similar working physiologic function, with real-time imaging capabilities. The resulting model is advantageous in representing human cardiac function with regard to anatomic and physiologic functions, and can account for atrial and ventricular interactions.


Assuntos
Coração/fisiologia , Modelos Animais , Animais , Diagnóstico por Imagem , Coração/anatomia & histologia , Hemodinâmica/fisiologia , Técnicas In Vitro , Suínos , Gravação em Vídeo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA