Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 96(23): 9524-9534, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815054

RESUMO

Quantitative assessment of gas-particle partitioning of individual components within complex atmospheric organic aerosol (OA) mixtures is critical for predicting and comprehending the formation and evolution of OA particles in the atmosphere. This investigation leverages previously documented data obtained through a temperature-programmed desorption-direct analysis in real-time, high-resolution mass spectrometry (TPD-DART-HRMS) platform. This methodology facilitates the bottom-up construction of volatility basis set (VBS) distributions for constituents found in three biogenic secondary organic aerosol (SOA) mixtures produced through the ozonolysis of α-pinene, limonene, and ocimene. The apparent enthalpies (ΔH*, kJ mol-1) and saturation mass concentrations (CT*, µg·m-3) of individual SOA components, determined as a function of temperature (T, K), facilitated an assessment of changes in VBS distributions and gas-particle partitioning with respect to T and atmospheric total organic mass loadings (tOM, µg·m-3). The VBS distributions reveal distinct differences in volatilities among monomers, dimers, and trimers, categorized into separate volatility bins. At the ambient temperature of T = 298 K, only monomers efficiently partition between gas and particle phases across a broad range of atmospherically relevant tOM values of 1-100 µg·m-3. Partitioning of dimers and trimers becomes notable only at T > 360 K and T > 420 K, respectively. The viscosity of SOA mixtures is assessed using a bottom-up calculation approach, incorporating the input of elemental formulas, ΔH*, CT*, and particle-phase mass fractions of the SOA components. Through this approach, we are able to accurately estimate the variations in SOA viscosity that result from the evaporation of its components. These variations are, in turn, influenced by atmospherically relevant changes in tOM and T. Comparison of the calculated SOA viscosity and diffusivity values with literature reported experimental results shows close agreement, thereby validating the employed calculation approach. These findings underscore the significant potential for TPD-DART-HRMS measurements in enabling the untargeted analysis of organic molecules within OA mixtures. This approach facilitates quantitative assessment of their gas-particle partitioning and allows for the estimation of their viscosity and condensed-phase diffusion, thereby contributing valuable insights to atmospheric models.

2.
Environ Sci Technol ; 58(17): 7493-7504, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38637508

RESUMO

Samples of brown carbon (BrC) material were collected from smoke emissions originating from wood pyrolysis experiments, serving as a proxy for BrC representative of biomass burning emissions. The acquired samples, referred to as "pyrolysis oil (PO1)," underwent subsequent processing by thermal evaporation of their volatile compounds, resulting in a set of three additional samples with volume reduction factors of 1.33, 2, and 3, denoted as PO1.33, PO2, and PO3. The chemical compositions of these POx samples and their BrC chromophore features were analyzed using a high-performance liquid chromatography instrument coupled with a photodiode array detector and a high-resolution mass spectrometer. The investigation revealed a noteworthy twofold enhancement of BrC light absorption observed for the progression of PO1 to PO3 samples, assessed across the spectral range of 300-500 nm. Concurrently, a decrease in the absorption Ångstrom exponent (AAE) from 11 to 7 was observed, indicating a weaker spectral dependence. The relative enhancement of BrC absorption at longer wavelengths was more significant, as exemplified by the increased mass absorption coefficient (MAC) measured at 405 nm from 0.1 to 0.5 m2/g. Molecular characterization further supports this darkening trend, manifesting as a depletion of small oxygenated, less absorbing monoaromatic compounds and the retention of relatively large, less polar, more absorbing constituents. Noteworthy alterations of the PO1 to PO3 mixtures included a reduction in the saturation vapor pressure of their components and an increase in viscosity. These changes were quantified by the mean values shifting from approximately 1.8 × 103 µg/m3 to 2.3 µg/m3 and from ∼103 Pa·s to ∼106 Pa·s, respectively. These results provide quantitative insights into the extent of BrC aerosol darkening during atmospheric aging through nonreactive evaporation. This new understanding will inform the refinement of atmospheric and chemical transport models.


Assuntos
Carbono , Carbono/química , Viscosidade , Compostos Orgânicos Voláteis/química , Luz , Atmosfera/química , Fumaça
3.
Environ Sci Process Impacts ; 25(10): 1718-1731, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37781874

RESUMO

Microplastic particles are of increasing environmental concern due to the widespread uncontrolled degradation of various commercial products made of plastic and their associated waste disposal. Recently, common technology used to repair sewer pipes was reported as one of the emission sources of airborne microplastics in urban areas. This research presents results of the multi-modal comprehensive chemical characterization of the microplastic particles related to waste discharged in the pipe repair process and compares particle composition with the components of uncured resin and cured plastic composite used in the process. Analysis of these materials employs complementary use of surface-enhanced Raman spectroscopy, scanning transmission X-ray spectro-microscopy, single particle mass spectrometry, and direct analysis in real-time high-resolution mass spectrometry. It is shown that the composition of the relatively large (100 µm) microplastic particles resembles components of plastic material used in the process. In contrast, the composition of the smaller (micrometer and sub-micrometer) particles is significantly different, suggesting their formation from unintended polymerization of water-soluble components occurring in drying droplets of the air-discharged waste. In addition, resin material type influences the composition of released microplastic particles. Results are further discussed to guide the detection and advanced characterization of airborne microplastics in future field and laboratory studies pertaining to sewer pipe repair technology.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos/análise , Água/análise , Espectrometria de Massas , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos
4.
Environ Sci Process Impacts ; 25(10): 1670-1683, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37682218

RESUMO

Air-discharged waste from commonly used trenchless technologies of sewer pipe repairs is an emerging and poorly characterized source of urban pollution. This study reports on the molecular-level characterization of the atmospherically discharged aqueous-phase waste condensate samples collected at four field sites of the sewer pipe repairs. The molecular composition of organic species in these samples was investigated using reversed-phase liquid chromatography coupled with a photodiode array detector and a high-resolution mass spectrometer equipped with interchangeable atmospheric pressure photoionization and electrospray ionization sources. The waste condensate components comprise a complex mixture of organic species that can partition between gas-, aqueous-, and solid-phases when water evaporates from the air-discharged waste. Identified organic species have broad variability in molecular weight, molecular structures, and carbon oxidation state, which also varied between the waste samples. All condensates contained complex mixtures of oxidized organics, N- and S-containing organics, condensed aromatics, and their functionalized derivatives that are directly released to the atmospheric environment during installations. Furthermore, semi-volatile, low volatility, and extremely low volatility organic compounds comprise 75-85% of the total compounds identified in the waste condensates. Estimates of the component-specific viscosities suggest that upon evaporation of water waste material would form the semi-solid and solid phases. The low volatilities and high viscosities of chemical components in these waste condensates will contribute to the formation of atmospheric secondary organic aerosols and atmospheric solid nanoplastic particles. Lastly, selected components expected in the condensates were quantified and found to be present at high concentrations (1-20 mg L-1) that may exceed regulatory limits.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Espectrometria de Massas , Água , Aerossóis/análise
5.
Anal Chem ; 95(19): 7403-7408, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126857

RESUMO

Atmospheric organic aerosols (OA) have profound effects on air quality, visibility, and radiative forcing of climate. Quantitative assessment of gas-particle equilibrium of OA components is critical to understand formation, growth, distribution, and evolution of OA in the atmosphere. This study presents a novel ambient pressure measurement approach developed and tested for untargeted screening of individual components in complex OA mixtures, followed by targeted chemical speciation of identified species and assessment of their physicochemical properties such as saturation vapor pressure and enthalpies of sublimation/evaporation. The method employs temperature-programmed desorption (TPD) experiments coupled to "direct analysis in real time" (DART) ionization source and high resolution mass spectrometry (HRMS) detection. Progression of the mass spectra is acquired in the TPD experiments over a T = 25-350 °C temperature range, and extracted ion chromatograms (EIC) of individual species are used to infer their apparent enthalpies of sublimation/evaporation (ΔHsub*) and saturation vapor pressure (pT*, Pa, or CT*, µg m-3) as a function of T. We validate application of this method for analysis of selected organic compounds with known ΔHsub and CT values, which showed excellent agreement between our results and the existing data. We then extend these experiments to interrogate individual components in complex OA samples generated in the laboratory-controlled ozonolysis of α-pinene, limonene, and ß-ocimene monoterpenes. The abundant OA species of interest are distinguished based on their accurate mass measurements, followed by quantitation of their apparent ΔHsub* and CT* values from the corresponding EIC records. Comparison of C298K* values derived from our experiments for the individual OA components with the corresponding estimates based on their elemental composition using a "molecular corridors" (MC) parametrization suggests that the MC calculations tend to overestimate the saturation vapor pressures of OA components. Presented results indicate very promising applicability of the TPD-DART-HRMS method for the untargeted analysis of organic molecules in OA and other environmental mixtures, enabling rapid detection and quantification of organic pollutants in the real-world condensed-phase samples at atmospheric pressure and without sample preparation.

6.
J Phys Chem A ; 127(7): 1656-1674, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36763810

RESUMO

Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.

7.
Environ Sci Process Impacts ; 25(2): 190-213, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35634912

RESUMO

Iron (Fe) is ubiquitous in nature and found as FeII or FeIII in minerals or as dissolved ions Fe2+ or Fe3+ in aqueous systems. The interactions of soluble Fe have important implications for fresh water and marine biogeochemical cycles, which have impacts on global terrestrial and atmospheric environments. Upon dissolution of FeIII into natural aquatic systems, organic carboxylic acids efficiently chelate FeIII to form [FeIII-carboxylate]2+ complexes that undergo a wide range of photochemistry-induced radical reactions. The chemical composition and photochemical transformations of these mixtures are largely unknown, making it challenging to estimate their environmental impact. To investigate the photochemical process of FeIII-carboxylates at the molecular level, we conduct a comprehensive experimental study employing UV-visible spectroscopy, liquid chromatography coupled to photodiode array and high-resolution mass spectrometry detection, and oil immersion flow microscopy. In this study, aqueous solutions of FeIII-citrate were photolyzed under 365 nm light in an experimental setup with an apparent quantum yield of (φ) ∼0.02, followed by chemical analyses of reacted mixtures withdrawn at increment time intervals of the experiment. The apparent photochemical reaction kinetics of Fe3+-citrates (aq) were expressed as two generalized consecutive reactions of with the experimental rate constants of j1 ∼ 0.12 min-1 and j2 ∼ 0.05 min-1, respectively. Molecular characterization results indicate that R and I consist of both water-soluble organic and Fe-organic species, while P compounds are a mixture of water-soluble and colloidal materials. The latter were identified as Fe-carbonaceous colloids formed at long photolysis times. The carbonaceous content of these colloids was identified as unsaturated organic species with low oxygen content and carbon with a reduced oxidation state, indicative of their plausible radical recombination mechanism under oxygen-deprived conditions typical for the extensively photolyzed mixtures. Based on the molecular characterization results, we discuss the comprehensive reaction mechanism of FeIII-citrate photochemistry and report on the formation of previously unexplored colloidal reaction products, which may contribute to atmospheric and terrestrial light-absorbing materials in aquatic environments.


Assuntos
Ácido Cítrico , Compostos Férricos , Ácido Cítrico/química , Compostos Férricos/química , Cromatografia Gasosa-Espectrometria de Massas , Citratos , Ácidos Carboxílicos/química , Água/química , Oxirredução , Coloides , Oxigênio
8.
Sci Adv ; 8(44): eabq6842, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36322651

RESUMO

Sea spray aerosol (SSA) is a widely recognized important source of ice-nucleating particles (INPs) in the atmosphere. However, composition-specific identification, nucleation processes, and ice nucleation rates of SSA-INPs have not been well constrained. Microspectroscopic characterization of ambient and laboratory-generated SSA confirms that water-borne exudates from planktonic microorganisms composed of a mixture of proteinaceous and polysaccharidic compounds act as ice-nucleating agents (INAs). These data and data from previously published mesocosm and wave channel studies are subsequently used to further develop the stochastic freezing model (SFM) producing ice nucleation rate coefficients for SSA-INPs. The SFM simultaneously predicts immersion freezing and deposition and homogeneous ice nucleation by SSA particles under tropospheric conditions. Predicted INP concentrations agree with ambient and laboratory measurements. In addition, this holistic freezing model is independent of the source and exact composition of the SSA particles, making it well suited for implementation in cloud and climate models.

9.
Nat Nanotechnol ; 17(11): 1171-1177, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36203091

RESUMO

Nanoplastic particles are inadequately characterized environmental pollutants that have adverse effects on aquatic and atmospheric systems, causing detrimental effects to human health through inhalation, ingestion and skin penetration1-3. At present, it is explicitly assumed that environmental nanoplastics (EnvNPs) are weathering fragments of microplastic or larger plastic debris that have been discharged into terrestrial and aquatic environments, while atmospheric EnvNPs are attributed solely to aerosolization by wind and other mechanical forces. However, the sources and emissions of unintended EnvNPs are poorly understood and are therefore largely unaccounted for in various risk assessments4. Here we show that large quantities of EnvNPs may be directly emitted into the atmosphere as steam-laden waste components discharged from a technology commonly used to repair sewer pipes in urban areas. A comprehensive chemical analysis of the discharged waste condensate has revealed the abundant presence of insoluble colloids, which after drying form solid organic particles with a composition and viscosity consistent with EnvNPs. We suggest that airborne emissions of EnvNPs from these globally used sewer repair practices may be prevalent in highly populated urban areas5, and may have important implications for air quality and toxicological levels that need to be mitigated.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Humanos , Microplásticos , Plásticos/análise , Plásticos/química , Atmosfera , Monitoramento Ambiental , Poluentes Químicos da Água/análise
10.
Chemosphere ; 308(Pt 2): 136421, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36108757

RESUMO

Anisole (methoxybenzene) represents an important marker compound of lignin pyrolysis and a starting material for many chemical products. In this study, secondary organic aerosols (SOA) formed by anisole via various atmospheric processes, including homogeneous photooxidation with varying levels of OH• and NOx and subsequent heterogeneous NO3• dark reactions, were investigated. The yields of anisole SOA, particle-bound organoperoxides, particle-induced oxidative potential (OP), and cytotoxicity were characterized in view of the atmospheric fate of the anisole precursor. Anisole SOA yields ranged between 0.12 and 0.35, depending on the reaction pathways and aging degrees. Chemical analysis of the SOA suggests that cleavage of the benzene ring is the main reaction channel in the photooxidation of anisole to produce low-volatility, highly oxygenated small molecules. Fresh anisole SOA from OH• photooxidation are more light-absorbing and have higher OP and organoperoxide content. The high correlation between SOA OP and organoperoxide content decreases exponentially with the degree of OH• aging. However, the contribution of organoperoxides to OP is minor (<4%), suggesting that other, non-peroxide oxidizers play a central role in anisole SOA OP. The particle-induced OP and particulate organoperoxides yield both reach a maximum value after ∼2 days' of photooxidation, implicating the potential long impact of anisole during atmospheric transport. NOx-involved photooxidation and nighttime NO3• reactions facilitate organic nitrate formation and enhance particle light absorption. High NOx levels suppress anisole SOA formation and organoperoxides yield in photooxidation, with decreased aerosol OP and cellular oxidative stress. In contrast, nighttime aging significantly increases the SOA toxicity and reactive oxygen species (ROS) generation in lung cells. These dynamic properties and the toxicity of anisole SOA advocate consideration of the complicated and consecutive aging processes in depicting the fate of VOCs and assessing the related effects in the atmosphere.


Assuntos
Poluentes Atmosféricos , Nitratos , Aerossóis/análise , Poluentes Atmosféricos/análise , Anisóis/análise , Anisóis/toxicidade , Benzeno/análise , Lignina/análise , Nitratos/química , Oxirredução , Espécies Reativas de Oxigênio/análise
11.
J Phys Chem A ; 126(32): 5375-5385, 2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-35925760

RESUMO

Glycolaldehyde (GAld) is a C2 water-soluble aldehyde produced during the atmospheric oxidation of isoprene and many other species and is commonly found in cloudwater. Previous work has established that glycolaldehyde evaporates more readily from drying aerosol droplets containing ammonium sulfate (AS) than does glyoxal, methylglyoxal, or hydroxyacetone, which implies that it does not oligomerize as quickly as these other species. Here, we report NMR measurements of glycolaldehyde's aqueous-phase reactions with AS, methylamine, and glycine. Reaction rate constants are smaller than those of respective glyoxal and methylglyoxal reactions in the pH range of 3-6. In follow-up cloud chamber experiments, deliquesced glycine and AS seed particles were found to take up glycolaldehyde and methylamine and form brown carbon. At very high relative humidity, these changes were more than 2 orders of magnitude faster than predicted by our bulk liquid NMR kinetics measurements, suggesting that reactions involving surface-active species at crowded air-water interfaces may play an important role. The high-resolution liquid chromatography-electrospray ionization-mass spectrometric analysis of filter extracts of unprocessed AS + GAld seed particles identified sugar-like C6 and C12 GAld oligomers, including proposed product 3-deoxyglucosone, with and without modification by reactions with ammonia to diimine and imidazole forms. Chamber exposure to methylamine gas, cloud processing, and simulated sunlight increased the incorporation of both ammonia and methylamine into oligomers. Many C4-C16 imidazole derivatives were detected in an extract of chamber-exposed aerosol along with a predominance of N-derivatized C6 and C12 glycolaldehyde oligomers, suggesting that GAld is capable of forming brown carbon SOA.


Assuntos
Aminas , Carbono , Acetaldeído/análogos & derivados , Aerossóis/química , Aminas/química , Amônia , Sulfato de Amônio/química , Glicina/química , Glioxal/química , Imidazóis , Metilaminas/química , Aldeído Pirúvico/química , Água/química
12.
Environ Sci Technol ; 56(8): 4816-4827, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35384654

RESUMO

Secondary organic aerosols (SOAs) affect incoming solar radiation by interacting with light at ultraviolet and visible wavelength ranges. However, the relationship between the chemical composition and optical properties of SOA is still not well understood. In this study, the complex refractive index (RI) of SOA produced from OH oxidation of naphthalene in the presence of nitrogen oxides (NOx) was retrieved online in the wavelength range of 315-650 nm and the bulk chemical composition of the SOA was characterized by an online high-resolution time-of-flight mass spectrometer. In addition, the molecular-level composition of brown carbon chromophores was determined using high-performance liquid chromatography coupled to a photodiode array detector and a high-resolution mass spectrometer. The real part of the RI of the SOA increases with both the NOx/naphthalene ratio and aging time, likely due to the increased mean polarizability and decreased molecular weight due to fragmentation. Highly absorbing nitroaromatics (e.g., C6H5NO4, C7H7NO4, C7H5NO5, C8H5NO5) produced under higher NOx conditions contribute significantly to the light absorption of the SOA. The imaginary part of the RI linearly increases with the NOx/VOCs ratio due to the formation of nitroaromatic compounds. As a function of aging, the imaginary RI increases with the O/C ratio (slope = 0.024), mainly attributed to the achieved higher NOx/VOCs ratio, which favors the formation of light-absorbing nitroaromatics. The light-absorbing enhancement is not as significant with extensive aging as it is under a lower aging time due to the opening of aromatic rings by reactions.


Assuntos
Naftalenos , Óxidos de Nitrogênio , Aerossóis/química , Carbono/química , Oxirredução
13.
Proc Natl Acad Sci U S A ; 119(14): e2104496119, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35344428

RESUMO

SignificancePhysical and chemical properties of individual atmospheric particles determine their climate impacts. Hygroscopic inorganic salt particles mixed with trace amounts of organic material are predicted to be liquid under typical tropospheric conditions in the summertime Arctic. Yet, we unexpectedly observed a significant concentration of solid particles composed of ammonium sulfate with an organic coating under conditions of high relative humidity and low temperature. These particle properties are consistent with marine biogenic-derived new particle formation and growth, with particle collision hypothesized to result in the solid phase. This particle source is predicted to have increasing relevance in the context of declining Arctic sea ice and increasing open water, with impacts on clouds, and therefore climate.

14.
Environ Sci Technol ; 56(6): 3340-3353, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231168

RESUMO

We investigate the chemical composition of organic light-absorbing components, also known as brown carbon (BrC) chromophores, formed in a proxy of anthropogenic secondary organic aerosol generated from the photooxidation of naphthalene (naph-SOA) in the absence and presence of NOx. High-performance liquid chromatography equipped with a photodiode array detector and electrospray ionization high-resolution mass spectrometer is employed to characterize naph-SOA and its BrC components. We provide molecular-level insights into the chemical composition and optical properties of individual naph-SOA components and investigate their BrC relevance. This work reveals the formation of strongly absorbing nitro-aromatic chromophores under high-NOx conditions and describes their degradation during atmospheric aging. NOx addition enhanced the light absorption of naph-SOA while reducing wavelength-dependence, as seen by the mass absorption coefficient (MAC) and absorption Ångström exponent (AAE). Optical parameters of naph-SOA generated under low- and high-NOx conditions showed a range of values from MACOM 405nm ∼ 0.12 m2 g-1 and AAE300-450nm ∼ 8.87 (low-NOx) to MACOM 405nm ∼ 0.19 m2 g-1 and AAE300-450nm ∼ 7.59 (high-NOx), consistent with "very weak" and "weak" BrC optical classes, respectively. The weak-BrC class is commonly attributed to biomass smoldering emissions, which appear to have optical properties comparable with the naph-SOA. Molecular chromophores contributing to naphthalene BrC absorption were identified with substantial nitro-aromatics, indicating that these species may be used as source-specific markers of BrC related to the anthropogenic emissions.


Assuntos
Poluentes Atmosféricos , Carbono , Aerossóis/química , Poluentes Atmosféricos/análise , Biomassa , Carbono/química , Naftalenos
15.
Environ Sci Technol ; 56(7): 4173-4186, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35287433

RESUMO

This study reports molecular-level characterization of brown carbon (BrC) attributed to water-soluble organic carbon in six snowpack samples collected from northern Xinjiang, China. The molecular composition and light-absorbing properties of BrC chromophores were unraveled by application of high-performance liquid chromatography (HPLC) coupled to a photodiode array (PDA) detector and high-resolution mass spectrometry. The chromophores were classified into five major types, that is, (1) phenolic/lignin-derivedcompounds, (2) flavonoids, (3) nitroaromatics, (4) oxygenated aromatics, and (5) other chromophores. Identified chromophores account for ∼23-64% of the total light absorption measured by the PDA detector in the wavelength range of 300-370 nm. In the representative samples from urban and remote areas, oxygenated aromatics and nitroaromatics dominate the absorption in the wavelengths below and above 320 nm, respectively. The highly polluted urban sample shows the most complex HPLC-PDA chromatogram, and more other chromophores contribute to the bulk absorption. Phenolic/lignin-derived compounds are the most light-absorbing species in the soil-influenced sample. Chromophores in two remote samples exhibit ultraviolet-visible features distinct from other samples, which are attributed to flavonoids. Identification of individual chromophores and quantitative analysis of their optical properties are helpful for elucidating the roles of BrC in snow radiative balance and photochemistry.


Assuntos
Carbono , Água , Aerossóis/análise , Carbono/análise , China , Monitoramento Ambiental , Espectrometria de Massas , Água/química
16.
Environ Int ; 157: 106801, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34343933

RESUMO

Biomass burning (BB) is an important source of primary organic aerosols (POA). These POA contain a significant fraction of semivolatile organic compounds, and can release them into the gas phase during the dilution process in transport. Such evaporated compounds were termed "secondarily evaporated BB organic gases (SBB-OGs)" to distinguish them from the more studied primary emissions. SBB-OGs contribute to the formation of secondary organic aerosols (SOA) through reactions with atmospheric oxidants, and thus may influence human health and the Earth's radiation budget. In this study, tar materials collected from wood pyrolysis were taken as proxies for POA from smoldering-phase BB and were used to release SBB-OGs constantly in the lab. OH-initiated oxidation of the SBB-OGs in the absence of NOx was investigated using an oxidation flow reactor, and the chemical, optical, and toxicological properties of SOA were comprehensively characterized. Carbonyl compounds were the most abundant species in identified SOA species. Human lung epithelial cells exposed to an environmentally relevant dose of the most aged SOA did not exhibit detectable cell mortality. The oxidative potential of SOA was characterized with the dithiothreitol (DTT) assay, and its DTT consumption rate was 15.5 ± 0.5 pmol min-1 µg-1. The SOA present comparable light scattering to BB-POA, but have lower light absorption with imaginary refractive index less than 0.01 within the wavelength range of 360-600 nm. Calculations based on Mie theory show that pure airborne SOA with atmospherically relevant sizes of 50-400 nm have a cooling effect; when acting as the coating materials, these SOA can counteract the warming effect brought by airborne black carbon aerosol.


Assuntos
Poluentes Atmosféricos , Gases , Aerossóis/análise , Idoso , Poluentes Atmosféricos/análise , Poluentes Atmosféricos/toxicidade , Biomassa , Clima , Humanos , Fuligem
17.
Environ Sci Technol ; 55(8): 5199-5211, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33733745

RESUMO

Guaiacyl acetone (GA) is a phenolic carbonyl emitted in significant quantities by wood combustion that undergoes rapid aqueous-phase oxidation to produce aqueous secondary organic aerosol (aqSOA). We investigate the photosensitized oxidation of GA by an organic triplet excited state (3C*) and the formation and aging of the resulting aqSOA in wood smoke-influenced fog/cloud water. The chemical transformations of the aqSOA were characterized in situ using a high-resolution time-of-flight aerosol mass spectrometer. Additionally, aqSOA samples collected over different time periods were analyzed using high-performance liquid chromatography coupled with a photodiode array detector and a high-resolution Orbitrap mass spectrometer (HPLC-PDA-HRMS) to provide details on the molecular composition and optical properties of brown carbon (BrC) chromophores. Our results show efficient formation of aqSOA from GA, with an average mass yield around 80%. The composition and BrC properties of the aqSOA changed significantly over the course of reaction. Three generations of aqSOA products were identified via positive matrix factorization analysis of the aerosol mass spectrometry data. Oligomerization and functionalization dominated the production of the first-generation aqSOA, whereas fragmentation and ring-opening reactions controlled the formation of more oxidized second- and third-generation products. Significant formation of BrC was observed in the early stages of the photoreaction, while organic acids were produced throughout the experiment. High-molecular weight molecules (m/z > 180) with high aromaticity were identified via HPLC-PDA-HRMS and were found to account for a majority of the UV-vis absorption of the aqSOA.


Assuntos
Evolução Química , Madeira , Aerossóis , Carbono , Água
18.
Environ Sci Technol ; 55(5): 2878-2889, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596062

RESUMO

Nighttime oxidation of biogenic volatile organic compounds (BVOCs) by nitrate radicals (NO3·) represents one of the most important interactions between anthropogenic and natural emissions, leading to substantial secondary organic aerosol (SOA) formation. The direct climatic effect of such SOA cannot be quantified because its optical properties and atmospheric fate are poorly understood. In this study, we generated SOA from the NO3· oxidation of a series BVOCs including isoprene, monoterpenes, and sesquiterpenes. The SOA were subjected to comprehensive online and offline chemical composition analysis using high-resolution mass spectrometry and optical properties measurements using a novel broadband (315-650 nm) cavity-enhanced spectrometer, which covers the wavelength range needed to understand the potential contribution of the SOA to direct radiative forcing. The SOA contained a significant fraction of oxygenated organic nitrates (ONs), consisting of monomers and oligomers that are responsible for the detected light absorption in the 315-400 nm range. The SOA created from ß-pinene and α-humulene was further photochemically aged in an oxidation flow reactor. The SOA has an atmospheric photochemical bleaching lifetime of >6.2 h, indicating that some of the ONs in the SOA may serve as atmosphere-stable nitrogen oxide sinks or reservoirs and will absorb and scatter incoming solar radiation during the daytime.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Aerossóis , Poluentes Atmosféricos/análise , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos , Nitratos , Óxidos de Nitrogênio
19.
Environ Sci Technol ; 55(4): 2511-2521, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33499599

RESUMO

This study provides molecular insights into the light absorption properties of biomass burning (BB) brown carbon (BrC) through the chemical characterization of tar condensates generated from heated wood pellets at oxidative and pyrolysis conditions. Both liquid tar condensates separated into "darker oily" and "lighter aqueous" immiscible phases. The molecular composition of these samples was investigated using reversed-phase liquid chromatography coupled with a photodiode array detector and a high-resolution mass spectrometer. The results revealed two sets of BrC chromophores: (1) common to all four samples and (2) specific to the "oily" fractions. The common BrC chromophores consist of polar, monoaromatic species. The oil-specific BrC chromophores include less-polar and nonpolar polyaromatic compounds. The most-light-absorbing pyrolysis oily phase (PO) was aerosolized and size-separated using a cascade impactor to compare the composition and optical properties of the bulk versus the aerosolized BrC. The mass absorption coefficient (MAC300-500 nm) of aerosolized PO increased compared to that of the bulk, due to gas-phase partitioning of more volatile and less absorbing chromophores. The optical properties of the aerosolized PO were consistent with previously reported ambient BB BrC measurements. These results suggest the darkening of atmospheric BrC following non-reactive evaporation that transforms the optical properties and composition of aged BrC aerosols.


Assuntos
Carbono , Madeira , Aerossóis , Biomassa , Água
20.
J Mass Spectrom ; 57(2): e4804, 2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35019202

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high-resolution mass spectrometric detection (LC-PDA-HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non-polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC-MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step-by-step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI-MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2 experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ ) of the standard mixture and its individual PAHs using LC-PDA data. (5) Assessment of the minimal injected mass required for accurate quantification of MACλ of the standard mixture and of a multi-component environmental sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA