Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 19(12)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558119

RESUMO

In this study, a novel biomaterial, i.e., brushite containing 0.67 wt% of selenium (Se-Bru) was synthesized via a wet precipitation method. Pure, unsubstituted brushite (Bru) was synthesized via the same method and used as a reference material. Different techniques of instrumental analysis were applied to investigate and compare physicochemical properties of both materials. Fourier-Transform Infrared Spectroscopy confirmed the chemical identity of both materials. Scanning Electron Microscopy (SEM) was used to study the morphology and indicated that both samples (Bru and Se-Bru) consisted of plate-like microcrystals. Powder X-ray Diffraction (PXRD) showed that Bru, as well as Se-Bru were crystallographically homogenous. What is more, the data obtained from PXRD studies revealed that the substitution of selenite ions into the crystal structure of the material had clearly affected its lattice parameters. The incorporation of selenium was also confirmed by solid-state ¹H→31P CP MAS kinetics experiments. Additionally, studies on the release kinetics of the elements forming Se-Bru and preliminary cytotoxicity tests were conducted. This preliminary research will favor a better understanding of ionic substitution in calcium phosphates and may be a starting point for the development of selenium-doped brushite cements for potential use in bone tissue impairments treatment.


Assuntos
Substitutos Ósseos/síntese química , Fosfatos de Cálcio/síntese química , Selênio/química , Animais , Células 3T3 BALB , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Fosfatos de Cálcio/farmacologia , Sobrevivência Celular , Precipitação Química , Camundongos , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Engenharia Tecidual , Difração de Raios X
2.
Int J Mol Sci ; 18(12)2017 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-29186932

RESUMO

Calcium phosphate materials (CaPs) are similar to inorganic part of human mineralized tissues (i.e., bone, enamel, and dentin). Owing to their high biocompatibility, CaPs, mainly hydroxyapatite (HA), have been investigated for their use in various medical applications. One of the most widely used ways to improve the biological and physicochemical properties of HA is ionic substitution with trace ions. Recent developments in bioceramics have already demonstrated that introducing foreign ions is also possible in other CaPs, such as tricalcium phosphates (amorphous as well as α and ß crystalline forms) and brushite. The purpose of this paper is to review recent achievements in the field of non-apatitic CaPs substituted with various ions. Particular attention will be focused on tricalcium phosphates (TCP) and "additives" such as magnesium, zinc, strontium, and silicate ions, all of which have been widely investigated thanks to their important biological role. This review also highlights some of the potential biomedical applications of non-apatitic substituted CaPs.


Assuntos
Materiais Biocompatíveis/química , Fosfatos de Cálcio/química , Metais Pesados/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA