Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 589, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867150

RESUMO

BACKGROUND: Bisphenol S (BPS) is a substitute for bisphenol A in plastic manufacturing and, as a potential endocrine disruptor, may alter the physiology of the oviduct, in which fertilization and early embryo development take place in mammals. The objective of this study was to assess the effect of a daily dietary exposure to BPS combined with a contrasted diet on the oviduct fluid proteome using an ovine model. RESULTS: Eighty adult cyclic ewes were allotted to four groups (20/group): overfed (OF) consuming 50 µg/kg/day of BPS in their diet, underfed (UF) consuming 50 µg/kg/day of BPS, and non-exposed controls in each diet group. After three months, the mean body condition score, plasma levels of glucose and non-esterified fatty acids were significantly higher in OF than in UF females. The proteins in collected OF samples (50 µg) were analyzed by nanoliquid chromatography coupled with tandem mass spectrometry (nanoLC-MS/MS). Overall, 1563 proteins were identified, among which 848 were quantified. Principal component analysis of the data revealed a clear discrimination of samples according to the diet and a segregation between BPS-exposed and non-exposed females in overfed ewes. Hierarchical clustering of differentially abundant proteins (DAPs) identified two clusters of 101 and 78 DAPs according to the diet. Pairwise comparisons between groups revealed a stronger effect of BPS in OF than in UF females (70 vs. 24 DAPs) and a stronger effect of the diet in BPS-exposed than non-exposed females (56 vs. 36 DAPs). Functional analysis of DAPs showed an enrichment in metabolic processes, immune system, cell response to stress, and reproductive processes. CONCLUSIONS: This work highlights for the first time the important impact of BPS on the oviduct proteome, with larger effects seen in OF than UF females. These results, together with previous ones, raise health concerns for everyone and call for a greater regulation of BPS in the food industry.


Assuntos
Oviductos , Fenóis , Proteoma , Sulfonas , Animais , Feminino , Ovinos , Fenóis/toxicidade , Proteoma/metabolismo , Oviductos/metabolismo , Oviductos/efeitos dos fármacos , Sulfetos/administração & dosagem , Proteômica , Administração Oral , Dieta
2.
Mol Cell Endocrinol ; 588: 112216, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38556161

RESUMO

Photoperiod is the main environmental driver of seasonal responses in organisms living at temperate and polar latitudes. Other external cues such as food and temperature, and internal cues including hormones, intervene to fine-tune phasing of physiological functions to the solar year. In mammals, the medio-basal hypothalamus (MBH) is the key integrator of these cues, which orchestrates a wide array of seasonal functions, including breeding. Here, using RNAseq and RT-qPCR, we demonstrate that molecular components of the photoperiodic response previously identified in ewes are broadly conserved in does (female goats, Capra hircus), with a common core of ∼50 genes. This core group can be defined as the "MBH seasonal trancriptome", which includes key players of the pars tuberalis-tanycytes neuroendocrine retrograde pathway that governs intra-MBH photoperiodic switches of triiodothyronine (T3) production (Tshb, Eya3, Dio2 and SlcO1c1), the two histone methyltransferases Suv39H2 and Ezh2 and the secreted protein Vmo1. Prior data in ewes revealed that T3 and estradiol (E2), both key hormones for the proper timing of seasonal breeding, differentially impact the MBH seasonal transcriptome, and identified cellular and molecular targets through which these hormones might act. In contrast, information regarding the potential impact of progesterone (P4) upon the MBH transcriptome was nonexistent. Here, we demonstrate that P4 has no discernible transcriptional impact in either does or ewes. Taken together, our data show that does and ewes possess a common core set of photoperiod-responsive genes in the MBH and conclusively demonstrate that P4 is not a key regulator of the MBH transcriptome.


Assuntos
Cabras , Hipotálamo , Fotoperíodo , Progesterona , Ovinos , Transcriptoma , Animais , Feminino , Estro , Cabras/genética , Hipotálamo/metabolismo , Progesterona/metabolismo , Estações do Ano , Análise de Sequência de RNA , Ovinos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Conjuntos de Dados como Assunto
3.
J Neuroendocrinol ; 34(10): e13198, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36168278

RESUMO

In mammals, the medio-basal hypothalamus (MBH) integrates photoperiodic and food-related cues to ensure timely phasing of physiological functions, including seasonal reproduction. The current human epidemics of obesity and associated reproductive disorders exemplifies the tight link between metabolism and reproduction. Yet, how food-related cues impact breeding at the level of the MBH remains unclear. In this respect, the sheep, which is a large diurnal mammal with a marked dual photoperiodic/metabolic control of seasonal breeding, is a relevant model. Here, we present a large-scale study in ewes (n = 120), which investigated the impact of food restriction (FRes) on the MBH transcriptome using unbiased RNAseq, followed by RT-qPCR. Few genes (~100) were impacted by FRes and the transcriptional impact was very modest (<2-fold increase or < 50% decrease for most genes). As anticipated, FRes increased expression of Npy/AgRP/LepR and decreased expression of Pomc/Cartpt, while Kiss1 expression was not impacted. Of particular interest, Eya3, Nmu and Dio2, genes involved in photoperiodic decoding within the MBH, were also affected by FRes. Finally, we also identified a handful of genes not known to be regulated by food-related cues (e.g., RNase6, HspA6, Arrdc2). In conclusion, our transcriptomics study provides insights into the impact of metabolism on the MBH in sheep, which may be relevant to human, and identifies possible molecular links between metabolism and (seasonal) reproduction.


Assuntos
Hipotálamo , Transcriptoma , Humanos , Animais , Ovinos , Feminino , Estações do Ano , Hipotálamo/metabolismo , Fotoperíodo , Reprodução/fisiologia , Mamíferos
4.
Front Endocrinol (Lausanne) ; 13: 892213, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685208

RESUMO

Bisphenol A (BPA), a plasticizer and endocrine disruptor, has been substituted by bisphenol S (BPS), a structural analogue that had already shown adverse effects on granulosa cell steroidogenesis. The objective of this study was to assess the effect of chronic exposure to BPS, a possible endocrine disruptor, on steroid hormones in the ovary, oviduct and plasma using the ewe as a model. Given the interaction between steroidogenesis and the metabolic status, the BPS effect was tested according to two diet groups. Eighty adult ewes were allotted to restricted (R) and well-fed (WF) groups, that were further subdivided into two subgroups. Ewes were exposed to 50 µg BPS/kg/day in their diet (R50 and WF50 groups) or were unexposed controls (R0 and WF0 groups). After at least 3 months of BPS exposure, preovulatory follicular fluid, oviduct fluid and plasma were collected and steroid hormones were analyzed by gas chromatography coupled with tandem mass spectrometry (GC-MS/MS). A deleterious effect of restricted diet on the volume of oviduct fluid and numbers of pre-ovulatory follicles was observed. Exposure to BPS impaired estradiol concentrations in both follicular and oviduct fluids of well-fed ewes and progesterone, estradiol and estrone concentrations in plasma of restricted ewes. In addition, a significant interaction between metabolic status and BPS exposure was observed for seven steroids, including estradiol. In conclusion, BPS acts in ewes as an endocrine disruptor with differential actions according to metabolic status.


Assuntos
Disruptores Endócrinos , Animais , Disruptores Endócrinos/toxicidade , Estradiol , Feminino , Humanos , Oviductos/metabolismo , Fenóis , Progesterona/metabolismo , Ovinos , Sulfonas , Espectrometria de Massas em Tandem
5.
Ecotoxicol Environ Saf ; 229: 113096, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34952380

RESUMO

Bisphenol A (BPA), an endocrine disruptor, has been replaced by structural analogues including bisphenol S (BPS). BPA and BPS exhibited similar effects regarding reproductive functions. Moreover, metabolic status and lipid metabolism are related to female fertility and could worsen BPS effects. The objective was to determine BPS in vivo effects on folliculogenesis and embryo production after chronic exposure through diet, and the influence of metabolic status in adult ewes. Sixty primiparous 2.5 year-old ewes, undergoing a restricted or well fed diet, were exposed to BPS (0, 4 or 50 µg/kg/day) for at least three months. After hormonal oestrus synchronisation and ovarian stimulation, ewes were subjected to ovum pick-up (OPU) procedures to collect immature oocytes, that underwent in vitro maturation, fertilisation and embryo production. Body weight, body condition score and plasma glucose were higher in well-fed compared to restricted ewes, while plasma NEFA was lower during the 4-5 months after the beginning of the diets. Plasma progesterone levels increased on day 5 before OPU session in well-fed compared to restricted ewes. No effect of BPS dose was observed on follicle population, plasma AMH levels and embryo production numbers and rates. However, a significant diet x BPS dose interaction was reported for cleaved embryos, > 4-cell embryos, blastocyst and early blastocyst numbers, and plasma triiodothyronine levels. Our study showed that a contrasted diet did not affect follicle population nor embryo production in adult ewes but could affect the quality and progesterone secretion of the corpus luteum. Chronic low BPS exposure had no effect on follicular population and oocyte competence. Nevertheless, the significant diet x dose interactions observed on embryo production suggest that BPS effect is modulated by metabolic status. Further studies are required to assess the risk of BPS exposure for public reproductive health.


Assuntos
Oócitos , Sulfonas , Animais , Dieta/veterinária , Embrião de Mamíferos , Feminino , Fenóis , Ovinos
6.
Endocrinology ; 158(11): 3914-3928, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28938486

RESUMO

Exposure to a ram during spring stimulates luteinizing hormone (LH) secretion and can induce ovulation in sexually quiescent ewes ("ram effect"). Kisspeptin (Kiss) present in the arcuate nucleus (ARC) and the preoptic area (POA) is a potent stimulators of LH secretion. Our aim was to investigate whether Kiss neurons mediate the increase in LH secretion during the ram effect. With double immunofluorescent detection, we identified Kiss neurons (Kiss IR) activated (Fos IR) by exposure to a ram for 2 hours (M2) or 12 hours (M12) or to ewes for 2 hours (C). The density of cells Kiss + Fos IR and the proportion of Kiss IR cells that were also Fos IR cells were higher in M2 and M12 than in C in ARC (P < 0.002) and POA (P < 0.02). In ARC, these parameters were also higher in M12 than in M2 (P < 0.02 and P < 0.05). Kiss antagonist (P234 10-6M) administered by retrodialysis in POA for 3 hours at the time of introduction of the ram reduced the amplitude of the male-induced increase in LH concentration compared with solvent (P < 0.02). In ARC, P234 had a more limited effect (P < 0.038 1 hour after P234) but pulse frequency increased less than after solvent (P = 0.07). In contrast, Kiss antagonist (P271 10-4M) infused in ARC but not POA 6 to 18 hours after introduction of the ram prevented the LH surge in the ewe (0/6 vs 4/5 and 4/6 in C). These results suggest that both populations of Kiss neurons are involved in the ram-induced pulsatile LH secretion and in the LH surge.


Assuntos
Anestro/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Neurônios/metabolismo , Comportamento Sexual Animal/fisiologia , Ovinos/fisiologia , Anestro/sangue , Criação de Animais Domésticos , Animais , Feminino , Masculino , Neurônios/citologia , Estimulação Física
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA