Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38673897

RESUMO

Pancreatic cancer, most frequently as ductal adenocarcinoma (PDAC), is the third leading cause of cancer death. Clear-cell primary adenocarcinoma of the pancreas (CCCP) is a rare, aggressive, still poorly characterized subtype of PDAC. We report here a case of a 65-year-old male presenting with pancreatic neoplasia. A histochemical examination of the tumor showed large cells with clear and abundant intracytoplasmic vacuoles. The clear-cell foamy appearance was not related to the hyperproduction of mucins. Ultrastructural characterization with transmission electron microscopy revealed the massive presence of mitochondria in the clear-cell cytoplasm. The mitochondria showed disordered cristae and various degrees of loss of structural integrity. Immunohistochemistry staining for NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2 (NDUFA4L2) proved specifically negative for the clear-cell tumor. Our ultrastructural and molecular data indicate that the clear-cell nature in CCCP is linked to the accumulation of disrupted mitochondria. We propose that this may impact on the origin and progression of this PDAC subtype.


Assuntos
Mitocôndrias , Neoplasias Pancreáticas , Humanos , Masculino , Idoso , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/ultraestrutura , Neoplasias Pancreáticas/metabolismo , Mitocôndrias/ultraestrutura , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/ultraestrutura , Adenocarcinoma de Células Claras/metabolismo , Microscopia Eletrônica de Transmissão , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/ultraestrutura , Carcinoma Ductal Pancreático/metabolismo , Imuno-Histoquímica
2.
Oral Oncol ; 148: 106635, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37988837

RESUMO

OBJECTIVES: Adenoid cystic carcinoma (ACC) is a rare type of cancer that typically arises from glandular tissues, most commonly in the salivary glands. Although relatively rare, it represents a serious clinical issue as the management of the disease is highly complex being the only therapeutic options represented by invasive surgery and/or radiotherapy. In the present study, we have explored the potential of galectin-3 binding protein (LGALS3BP) as a novel target for antibody-drug conjugate (ADC) therapy in ACC. MATERIALS AND METHODS: RNAseq was conducted on a panel of 10 ACC patient-derived xenografts (PDX)s tissues and 6 normal salivary glands to analyze LGALS3BP gene expression. Protein expression was assessed in ACC PDX and primary tumor tissues using immunohistochemistry. Anti-LGALS3BP ADC named 1959-sss/DM4, was tested in high LGALS3BP expressing ACC PDX model ST1502B. RESULTS: RNAseq analysis revealed that LGALS3BP expression was highly expressed in ACC PDX tissues compared to normal salivary gland tissues. As evaluated by immunohistochemical analysis, LGALS3BP protein was found to be heterogeneously expressed in 10 ACC PDX and in tumor tissues derived from a cohort of 37 ACC patients. Further, treatment with 1959-sss/DM4 ADC led to durable tumor growth inhibition (TGI) in 100% of animals without observed toxicity. CONCLUSIONS: Our study provides strong evidence that LGALS3BP is a promising therapeutic target for ACC, warranting further expedited preclinical and clinical investigation.


Assuntos
Antígenos de Neoplasias , Biomarcadores Tumorais , Carcinoma Adenoide Cístico , Neoplasias das Glândulas Salivares , Animais , Humanos , Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma Adenoide Cístico/tratamento farmacológico , Modelos Animais de Doenças , Neoplasias das Glândulas Salivares/tratamento farmacológico , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos
3.
FEBS Lett ; 598(2): 252-265, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38112379

RESUMO

Adenoid cystic carcinoma (ACC) is a head and neck cancer that frequently originates in salivary glands, but can also strike other exocrine glands such as the breast. A key molecular alteration found in the majority of ACC cases is MYB gene rearrangements, leading to activation of the oncogenic transcription factor MYB. In this study, we used immortalised breast epithelial cells and an inducible MYB transgene as a model of ACC. Molecular profiling confirmed that MYB-driven gene expression causes a transition into an ACC-like state. Using this new cell model, we identified BUB1 as a targetable kinase directly controlled by MYB, whose pharmacological inhibition caused MYB-dependent synthetic lethality, growth arrest and apoptosis of patient-derived cells and organoids.


Assuntos
Carcinoma Adenoide Cístico , Humanos , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Carcinoma Adenoide Cístico/patologia , Pontos de Checagem da Fase M do Ciclo Celular , Fatores de Transcrição/genética , Glândulas Salivares , Proteínas Serina-Treonina Quinases/genética
4.
Cell Death Discov ; 9(1): 400, 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898642

RESUMO

HER-3 (also known as ErbB-3) is a human epidermal growth factor receptor tyrosine kinases family member, and its expression in CRC (colorectal cancer) tissues was previously associated with poor prognosis. In this study, HER-3 expression was analyzed by immunohistochemistry in two cohorts of early and advanced metastatic CRC patients. The first cohort included 180 patients diagnosed with CRC in absence of lymph nodes or distant metastases (Stage I and Stage II), while the second was obtained from 53 advanced metastatic CRC patients who developed synchronous (SM) and metachronous (MM) liver metastases. In the first early-stage CRC cohort, 86 out of 180 (47.8%) tumors showed membranous expression of HER-3, with a mean percentage of positive tumor cells of 25.7%; conversely, in advanced metastatic CRC primary tumors, HER-3 was detected in all specimens, with a mean percentage of positive tumor cells of 76.1%. Kaplan-Meier curves showed that in the advanced metastatic CRC group, patients with HER-3high tumors had a significantly lower Cancer-Specific Survival (CSS) rate compared to patients with HER-3low tumors (p = 0.021). Importantly, this worse CSS rate was observed only in the MM subgroup of patients with HER-3high tumors (p = 0.002). Multivariate analysis confirmed that high HER-3 expression represents a significant and strong risk factor for death in patients developing MM liver metastases (Hazard Ratio = 64.9; 95% Confidence Interval, 4.7-886.6; p = 0.002). In addition, using a specific anti-HER-3 antibody-drug conjugate, named EV20/MMAF, we showed that HER-3 + CRC cells can be efficiently targeted in vitro and in vivo. Overall, this study confirms that surface HER-3 is highly expressed in CRC and reveals that HER-3 expression increases in metastatic CRC patients compared to early stage. Importantly, the results suggest that HER-3 has a prognostic and therapeutic value in patients developing MM liver metastases.

5.
Int J Oncol ; 63(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37654195

RESUMO

Colorectal cancer (CRC) is one of the most common and fatal types of cancer. Inflammation promotes CRC development, however, the underlying etiological factors are unknown. Human cytomegalovirus (HCMV), a virus that induces inflammation and other cancer hallmarks, has been detected in several types of malignancy, including CRC. The present study investigated whether HCMV infection was associated with expression of the pro­inflammatory enzymes 5­lipoxygenase (5­LO) and cyclooxygenase­2 (COX­2) and other molecular, genetic and clinicopathological CRC features. The present study assessed 146 individual paraffin­embedded CRC tissue microarray (TMA) cores already characterized for TP53 and KRAS mutations, microsatellite instability (MSI) status, Ki­67 index and EGFR by immunohistochemistry (IHC). The cores were further analyzed by IHC for the expression of two HCMV proteins (Immediate Early, IE and pp65) and the inflammatory markers 5­LO and COX­2. The CRC cell lines Caco­2 and LS­174T were infected with HCMV strain VR1814, treated with antiviral drug ganciclovir (GCV) and/or anti­inflammatory drug celecoxib (CCX) and analyzed by reverse transcription­quantitative PCR and immunofluorescence for 5­LO, COX­2, IE and pp65 transcripts and proteins. HCMV IE and pp65 proteins were detected in ~90% of the CRC cases tested; this was correlated with COX­2, 5­LO and KI­67 expression, but not with EGFR immunostaining, TP53 and KRAS mutations or MSI status. In vitro, HCMV infection upregulated 5­LO and COX­2 transcript and proteins in both Caco­2 and LS­174T cells and enhanced cell proliferation as determined by MTT assay. Treatment with GCV and CCX significantly decreased the transcript levels of COX­2, 5­LO, HCMV IE and pp65 in infected cells. HCMV was widely expressed in CRC and may promote inflammation and serve as a potential new target for CRC therapy.


Assuntos
Neoplasias Colorretais , Infecções por Citomegalovirus , Humanos , Araquidonato 5-Lipoxigenase/genética , Células CACO-2 , Ciclo-Oxigenase 2/genética , Antígeno Ki-67 , Proteínas Proto-Oncogênicas p21(ras)/genética , Celecoxib/farmacologia , Citomegalovirus/genética , Ganciclovir , Infecções por Citomegalovirus/complicações , Infecções por Citomegalovirus/genética , Neoplasias Colorretais/genética , Receptores ErbB
6.
Oral Dis ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37649401

RESUMO

OBJECTIVE: The aim of the present study was to evaluate the expression of intracellular and vesicular LGALS3BP in oral squamous cell carcinoma (OSCC) patients and available cell lines to explore its potential as a target for antibody-drug conjugate (ADC) therapy. METHODS: Free and vesicular LGALS3BP expression levels were evaluated in cancer tissues from a cohort of OSCC patients as well as in a panel of OSCC cell lines through immunohistochemistry, qRT-PCR, Western Blot analysis, and ELISA. RESULTS: LGALS3BP resulted in being highly expressed in the cytoplasm of tumour cells in OSCC patient tissues. A strong correlation was found between high LGALS3BP expression levels and aggressive histological features of OSCC. Biochemistry analysis performed on OSCC cell lines showed that LGALS3BP is expressed in all the tested cell lines and highly enriched in cancer-derived extracellular vesicles. Moreover, LGALS3BP high-expressing HOC621 and CAL27 OSCC cell lines showed high sensitivity to the ADC-payload DM4, with an IC50 around 0.3 nM. CONCLUSIONS: The present study highlights that LGALS3BP is highly expressed in OSCC suggesting a role as a potential diagnostic biomarker and therapeutic target for ADC-based therapy.

7.
Cancers (Basel) ; 15(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37509383

RESUMO

Trop-2 proteolytic processing in cancer cells exposes epitopes that were specifically targeted by the 2G10 antibody. We sought additional recognition of Trop-2 within difficult-to-reach, densely packed tumor sites. Trop-2 deletion mutants were employed in immunization and screening procedures, and these led to the recognition of a novel epitope in the N-terminal region of Trop-2, by the 2EF antibody. The 2EF mAb was shown to bind Trop-2 at cell-cell junctions in MCF-7 breast cancer cells, and in deeply seated sites in prostate cancer, that were inaccessible to benchmark anti-Trop-2 antibodies. The 2EF antibody was shown to inhibit the growth of HT29 colon tumor cells in vitro, with the highest activity at high cell density. In vivo, 2EF showed anticancer activity against SKOv3 ovarian, Colo205, HT29, HCT116 colon and DU-145 prostate tumors, with the highest impact on densely packed tumor sites, whereby 2EF outcompeted benchmark anti-Trop-2 antibodies. Given the different recognition modes of Trop-2 by 2EF and 2G10, we hypothesized the effective interaction of the two mAb in vivo. The 2EF mAb was indeed demonstrated to enhance the activity of 2G10 against tumor xenotransplants, opening novel avenues for Trop-2-targeted therapy. We humanized 2EF by state-of-the-art CDR grafting/re-modeling, yielding the Hu2EF for therapy of Trop-2-expressing tumors in patients.

8.
Mol Metab ; 74: 101752, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37308077

RESUMO

BACKGROUND: Insulin, secreted from pancreatic islets of Langerhans, is of critical importance in regulating glucose homeostasis. Defective insulin secretion and/or the inability of tissues to respond to insulin results in insulin resistance and to several metabolic and organ alterations. We have previously demonstrated that BAG3 regulates insulin secretion. Herein we explored the consequences of beta-cells specific BAG3 deficiency in an animal model. METHODS: We generated a beta-cells specific BAG3 knockout mouse model. Glucose and insulin tolerance tests, proteomics, metabolomics, and immunohistochemical analysis were used to investigate the role of BAG3 in regulating insulin secretion and the effects of chronic exposure to excessive insulin release in vivo. RESULTS: Beta-cells specific BAG3 knockout results in primary hyperinsulinism due to excessive insulin exocytosis finally leading to insulin resistance. We demonstrate that resistance is mainly muscle-dependent while the liver remains insulin sensitive. The chronically altered metabolic condition leads in time to histopathological alterations in different organs. We observe elevated glycogen and lipid accumulation in the liver reminiscent of non-alcoholic fatty liver disease as well as mesangial matrix expansion and thickening of the glomerular basement membrane, resembling the histology of chronic kidney disease. CONCLUSION: Altogether, this study shows that BAG3 plays a role in insulin secretion and provides a model for the study of hyperinsulinemia and insulin resistance.


Assuntos
Hiperinsulinismo , Resistência à Insulina , Células Secretoras de Insulina , Camundongos , Animais , Resistência à Insulina/genética , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Camundongos Knockout
9.
World J Gastroenterol ; 29(18): 2764-2783, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37274070

RESUMO

The liver is the most common site of metastases in patients with colorectal cancer. Colorectal liver metastases (CRLMs) are the result of molecular mechanisms that involve different cells of the liver microenvironment. The aberrant activation of Wingless/It (Wnt)/ß-catenin signals downstream of Wnt ligands initially drives the oncogenic transformation of the colon epithelium, but also the progression of metastatization through the epithelial-mesenchymal transition/mesenchymal-epithelial transition interactions. In liver microenvironment, metastatic cells can also survive and adapt through dormancy, which makes them less susceptible to pro-apoptotic signals and therapies. Treatment of CRLMs is challenging due to its variability and heterogeneity. Advances in surgery and oncology have been made in the last decade and a pivotal role for Wnt/ß-catenin pathway has been re-cognized in chemoresistance. At the state of art, there is a lack of clear understanding of why and how this occurs and thus where exactly the opportunities for developing anti-CRLMs therapies may lie. In this review, current knowledge on the involvement of Wnt signaling in the development of CRLMs was considered. In addition, an overview of useful biomarkers with a revision of surgical and non-surgical therapies currently accepted in the clinical practice for colorectal liver metastasis patients were provided.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Humanos , beta Catenina/metabolismo , Neoplasias Colorretais/genética , Via de Sinalização Wnt , Neoplasias Hepáticas/genética , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Movimento Celular , Metástase Neoplásica , Regulação Neoplásica da Expressão Gênica , Microambiente Tumoral
10.
Mol Oncol ; 17(8): 1460-1473, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37195369

RESUMO

Glioblastoma multiforme (GBM) is a lethal disease characterized by an overall survival of about 1 year, making it one of the most aggressive tumours, with very limited therapeutic possibilities. Specific biomarkers for early diagnosis as well as innovative therapeutic strategies are urgently needed to improve the management of this deadly disease. In this work, we demonstrated that vesicular galectin-3-binding protein (LGALS3BP), a glycosylated protein overexpressed in a variety of human malignancies, is a potential GBM disease marker and can be efficiently targeted by a specific antibody-drug conjugate (ADC). Immunohistochemical analysis on patient tissues showed that LGALS3BP is highly expressed in GBM and, compared with healthy donors, the amount of vesicular but not total circulating protein is increased. Moreover, analysis of plasma-derived extracellular vesicles from mice harbouring human GBM revealed that LGALS3BP can be used for liquid biopsy as a marker of disease. Finally, an ADC targeting LGALS3BP, named 1959-sss/DM4, specifically accumulates in tumour tissue, producing a potent and dose-dependent antitumor activity. In conclusion, our work provides evidence that vesicular LGALS3BP is a potential novel GBM diagnostic biomarker and therapeutic target deserving further preclinical and clinical validation.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , Imunoconjugados , Humanos , Animais , Camundongos , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Biomarcadores Tumorais/metabolismo , Imunoconjugados/farmacologia , Imunoconjugados/uso terapêutico , Vesículas Extracelulares/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Antígenos de Neoplasias/metabolismo
11.
Mol Cancer Ther ; 22(6): 790-804, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36921314

RESUMO

Next-generation Trop-2-targeted therapy against advanced cancers is hampered by expression of Trop-2 in normal tissues. We discovered that Trop-2 undergoes proteolytic activation by ADAM10 in cancer cells, leading to the exposure of a previously inaccessible protein groove flanked by two N-glycosylation sites. We designed a recognition strategy for this region, to drive selective cancer vulnerability in patients. Most undiscriminating anti-Trop-2 mAbs recognize a single immunodominant epitope. Hence, we removed it by deletion mutagenesis. Cancer-specific, glycosylation-prone mAbs were selected by ELISA, bio-layer interferometry, flow cytometry, confocal microscopy for differential binding to cleaved/activated, wild-type and glycosylation site-mutagenized Trop-2. The resulting 2G10 mAb family binds Trop-2-expressing cancer cells, but not Trop-2 on normal cells. We humanized 2G10 by state-of-the-art complementarity determining region grafting/re-modeling, yielding Hu2G10. This antibody binds cancer-specific, cleaved/activated Trop-2 with Kd < 10-12 mol/L, and uncleaved/wtTrop-2 in normal cells with Kd 3.16×10-8 mol/L, thus promising an unprecedented therapeutic index in patients. In vivo, Hu2G10 ablates growth of Trop-2-expressing breast, colon, prostate cancers, but shows no evidence of systemic toxicity, paving the way for a paradigm shift in Trop-2-targeted therapy.


Assuntos
Imunoconjugados , Neoplasias da Próstata , Masculino , Humanos , Antígenos de Neoplasias/genética , Anticorpos Monoclonais/farmacologia
12.
Gut ; 72(2): 360-371, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35623884

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with limited therapeutic options. However, metabolic adaptation to the harsh PDAC environment can expose liabilities useful for therapy. Targeting the key metabolic regulator mechanistic target of rapamycin complex 1 (mTORC1) and its downstream pathway shows efficacy only in subsets of patients but gene modifiers maximising response remain to be identified. DESIGN: Three independent cohorts of PDAC patients were studied to correlate PI3K-C2γ protein abundance with disease outcome. Mechanisms were then studied in mouse (KPC mice) and cellular models of PDAC, in presence or absence of PI3K-C2γ (WT or KO). PI3K-C2γ-dependent metabolic rewiring and its impact on mTORC1 regulation were assessed in conditions of limiting glutamine availability. Finally, effects of a combination therapy targeting mTORC1 and glutamine metabolism were studied in WT and KO PDAC cells and preclinical models. RESULTS: PI3K-C2γ expression was reduced in about 30% of PDAC cases and was associated with an aggressive phenotype. Similarly, loss of PI3K-C2γ in KPC mice enhanced tumour development and progression. The increased aggressiveness of tumours lacking PI3K-C2γ correlated with hyperactivation of mTORC1 pathway and glutamine metabolism rewiring to support lipid synthesis. PI3K-C2γ-KO tumours failed to adapt to metabolic stress induced by glutamine depletion, resulting in cell death. CONCLUSION: Loss of PI3K-C2γ prevents mTOR inactivation and triggers tumour vulnerability to RAD001 (mTOR inhibitor) and BPTES/CB-839 (glutaminase inhibitors). Therefore, these results might open the way to personalised treatments in PDAC with PI3K-C2γ loss.


Assuntos
Carcinoma Ductal Pancreático , Everolimo , Lipídeos , Lisossomos , Inibidores de MTOR , Neoplasias Pancreáticas , Fosfatidilinositol 3-Quinases , Animais , Camundongos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Glutamina/metabolismo , Lipídeos/biossíntese , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Nutrientes , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Everolimo/uso terapêutico , Inibidores de MTOR/uso terapêutico , Glutaminase , Neoplasias Pancreáticas
13.
Front Genet ; 14: 1297367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250577

RESUMO

A phylogenetic conservation analysis of Trop-2 across vertebrate species showed a high degree of sequence conservation, permitting to explore multiple models as pre-clinical benchmarks. Sequence divergence and incomplete conservation of expression patterns were observed in mouse and rat. Primate Trop-2 sequences were found to be 95%-100% identical to the human sequence. Comparative three-dimension primate Trop-2 structures were obtained with AlphaFold and homology modeling. This revealed high structure conservation of Trop-2 (0.66 ProMod3 GMQE, 0.80-0.86 ± 0.05 QMEANDisCo scores), with conservative amino acid changes at variant sites. Primate TACSTD2/TROP2 cDNAs were cloned and transfectants for individual ORF were shown to be efficiently recognized by humanized anti-Trop-2 monoclonal antibodies (Hu2G10, Hu2EF). Immunohistochemistry analysis of Macaca mulatta (rhesus monkey) tissues showed Trop-2 expression patterns that closely followed those in human tissues. This led us to test Trop-2 targeting in vivo in Macaca fascicularis (cynomolgus monkey). Intravenously injected Hu2G10 and Hu2EF were well tolerated from 5 to 10 mg/kg. Neither neurological, respiratory, digestive, urinary symptoms, nor biochemical or hematological toxicities were detected during 28-day observation. Blood serum pharmacokinetic (PK) studies were conducted utilizing anti-idiotypic antibodies in capture-ELISA assays. Hu2G10 (t1/2 = 6.5 days) and Hu2EF (t1/2 = 5.5 days) were stable in plasma, and were detectable in the circulation up to 3 weeks after the infusion. These findings validate primates as reliable models for Hu2G10 and Hu2EF toxicity and PK, and support the use of these antibodies as next-generation anti-Trop-2 immunotherapy tools.

14.
Nat Struct Mol Biol ; 29(11): 1101-1112, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36344846

RESUMO

Alternative polyadenylation (APA) yields transcripts differing in their 3'-end, and its regulation is altered in cancer, including prostate cancer. Here we have uncovered a mechanism of APA regulation impinging on the interaction between the exonuclease XRN2 and the RNA-binding protein Sam68, whose increased expression in prostate cancer is promoted by the transcription factor MYC. Genome-wide transcriptome profiling revealed a widespread impact of the Sam68/XRN2 complex on APA. XRN2 promotes recruitment of Sam68 to its target transcripts, where it competes with the cleavage and polyadenylation specificity factor for binding to strong polyadenylation signals at distal ends of genes, thus promoting usage of suboptimal proximal polyadenylation signals. This mechanism leads to 3' untranslated region shortening and translation of transcripts encoding proteins involved in G1/S progression and proliferation. Thus, our findings indicate that the APA program driven by Sam68/XRN2 promotes cell cycle progression and may represent an actionable target for therapeutic intervention.


Assuntos
Poliadenilação , Neoplasias da Próstata , Humanos , Masculino , Regiões 3' não Traduzidas/genética , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Exorribonucleases/genética , Exorribonucleases/metabolismo , Neoplasias da Próstata/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
16.
EMBO Rep ; 23(12): e55687, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36281991

RESUMO

Primary cilia (PC) are important signaling hubs, and we here explored their role in colonic pathology. In the colon, PC are mostly present on fibroblasts, and exposure of mice to either chemically induced colitis-associated colon carcinogenesis (CAC) or dextran sodium sulfate (DSS)-induced acute colitis decreases PC numbers. We generated conditional knockout mice with reduced numbers of PC on colonic fibroblasts. These mice show increased susceptibility to CAC, as well as DSS-induced colitis. Secretome and immunohistochemical analyses of DSS-treated mice display an elevated production of the proinflammatory cytokine IL-6 in PC-deficient colons. An inflammatory environment diminishes PC presence in primary fibroblast cultures, which is triggered by IL-6 as identified by RNA-seq analysis together with blocking experiments. These findings suggest an activation loop between IL-6 production and PC loss. An analysis of PC presence on biopsies of patients with ulcerative colitis or colorectal cancer (CRC) reveals decreased numbers of PC on colonic fibroblasts in pathological compared with surrounding normal tissue. Taken together, we provide evidence that a decrease in colonic PC numbers promotes colitis and CRC.


Assuntos
Cílios , Interleucina-6 , Camundongos , Animais , Interleucina-6/genética
17.
Oncogene ; 41(15): 2196-2209, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35217791

RESUMO

Breast cancer (BC) is the second cause of cancer-related deceases in the worldwide female population. Despite the successful treatment advances, 25% of BC develops resistance to current therapeutic regimens, thereby remaining a major hurdle for patient management. Current therapies, targeting the molecular events underpinning the adaptive resistance, still require effort to improve BC treatment. Using BC sphere cells (BCSphCs) as a model, here we showed that BC stem-like cells express high levels of Myc, which requires the presence of the multifunctional DNA/RNA binding protein Sam68 for the DNA-damage repair. Analysis of a cohort of BC patients displayed that Sam68 is an independent negative factor correlated with the progression of the disease. Genetic inhibition of Sam68 caused a defect in PARP-induced PAR chain synthesis upon DNA-damaging insults, resulting in cell death of TNBC cells. In contrast, BC stem-like cells were able to survive due to an upregulation of Rad51. Importantly, the inhibition of Rad51 showed synthetic lethal effect with the silencing of Sam68, hampering the cell viability of patient-derived BCSphCs and stabilizing the growth of tumor xenografts, including those TNBC carrying BRCA mutation. Moreover, the analysis of Myc, Sam68 and Rad51 expression demarcated a signature of a poor outcome in a large cohort of BC patients. Thus, our findings suggest the importance of targeting Sam68-PARP1 axis and Rad51 as potential therapeutic candidates to counteract the expansion of BC cells with an aggressive phenotype.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias da Mama , Proteínas de Ligação a DNA , Proteínas de Ligação a RNA , Rad51 Recombinase , Neoplasias de Mama Triplo Negativas , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Células-Tronco Neoplásicas/patologia , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Neoplasias de Mama Triplo Negativas/patologia
18.
Oncogene ; 41(12): 1795-1808, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132180

RESUMO

Trop-2 is a transmembrane signal transducer that is overexpressed in most human cancers, and drives malignant progression. To gain knowledge on the higher-order molecular mechanisms that drive Trop-2 signaling, we applied next-generation sequencing, proteomics, and high-resolution microscopy to models and primary cases of human colorectal cancer (CRC). We had previously shown that Trop-2 induces a Ca2+ signal. We reveal here that Trop-2 binds the cell membrane Na+/K+-ATPase, and that clustering of Trop-2 induces an intracellular Ca2+ rise followed by membrane translocation of PKCα, which in turn phosphorylates the Trop-2 cytoplasmic tail. This feed-forward signaling is promoted by the binding of Trop-2 to the PKCα membrane-anchor CD9. CRISPR-based inactivation of CD9 in CRC cells shows that CD9 is required by Trop-2 for recruiting PKCα and cofilin-1 to the cell membrane. This induces malignant progression through proteolytic cleavage of E-cadherin, remodeling of the ß-actin cytoskeleton, and activation of Akt and ERK. The interaction between Trop-2 and CD9 was validated in vivo in murine models of CRC growth and invasion. Overexpression of the components of this Trop-2-driven super-complex significantly worsened disease-free and overall survival of CRC patients, supporting a pivotal relevance in CRC malignant progression. Our findings demonstrate a previously unsuspected layer of cancer growth regulation, which is dormant in normal tissues, and is activated by Trop-2 in cancer cells.


Assuntos
Neoplasias Colorretais , Proteína Quinase C-alfa , Fatores de Despolimerização de Actina/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Neoplasias Colorretais/patologia , Humanos , Camundongos , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Transdução de Sinais , Tetraspanina 29
19.
Biomed Pharmacother ; 146: 112554, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923341

RESUMO

Colorectal cancer (CRC) is an aggressive tumor in which new treatment options deliver negative results on cure rates and long-term survival. The anticancer effects of growth hormone-releasing hormone (GHRH) antagonists have been reported in various experimental tumors, but their activity in CRC is unknown. In the present study, we demonstrated that chronic treatment with GHRH antagonist of MIAMI class, MIA-690, promoted survival and gradually blunted tumor progression in experimentally induced colitis-associated cancer in mice, paralleled by reduced inflammation in colon tissue. In particular, MIA-690 improved disease activity index score, and reduced loss of weight and mortality, by improving the survival rates, compared with vehicle-treated group. MIA-690 was also found to reduce various inflammatory and oxidative markers, such as serotonin, prostaglandin (PG)E2 and 8-iso-PGF2α levels, as well as COX-2, iNOS, TNF-α, IL-6 and NF-kB gene expression. Moreover, MIA-690 inhibited the protein expression of c-Myc, P-AKT and Bcl-2 and upregulated p53 protein expression. In conclusion, we showed that MIA-690 suppresses CRC progression and growth by reducing inflammatory and oxidative markers and modulating apoptotic and oncogenic pathways. Further investigations are required for translating these findings into the clinics.


Assuntos
Neoplasias Colorretais , Hormônio Liberador de Hormônio do Crescimento , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação para Baixo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Regulação para Cima
20.
Cancers (Basel) ; 13(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885156

RESUMO

Colorectal cancer (CRC) is a multistep process that arises in the colic tissue microenvironment. Oxidative stress plays a role in mediating CRC cell survival and progression, as well as promoting resistance to therapies. CRC progression is associated with Wnt/ß-Catenin signaling dysregulation and loss of proper APC functions. Cancer recurrence/relapse has been attributed to altered ROS levels, produced in a cancerous microenvironment. The effect of oxidative distress on Wnt/ß-Catenin signaling in the light of APC functions is unclear. This study evaluated the effect of H2O2-induced short-term oxidative stress in HCT116, SW480 and SW620 cells with different phenotypes of APC and ß-Catenin. The modulation and relationship of APC with characteristic molecules of Wnt/ß-Catenin were assessed in gene and protein expression. Results indicated that CRC cells, even when deprived of growth factors, under acute oxidative distress conditions by H2O2 promote ß-Catenin expression and modulate cytoplasmic APC protein. Furthermore, H2O2 induces differential gene expression depending on the cellular phenotype and leading to favor both Wnt/Catenin-dependent and -independent signaling. The exact mechanism by which oxidative distress can affect Wnt signaling functions will require further investigation to reveal new scenarios for the development of therapeutic approaches for CRC, in the light of the conserved functions of APC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA