RESUMO
The purpose of this study is to elucidate how patient-reported cognitive symptoms manifest from variations in hormone levels or precursors such as dehydroepiandrosterone (DHEA) and its sulfated form [collectively termed as DHEA(S)] and to investigate their association in breast cancer survivors. Levels of estradiol and DHEA(S) were compared between early-stage breast cancer patients with and without cancer-related cognitive impairment (CRCI) during adjuvant chemotherapy. Data were analyzed from 242 patients (mean age ± SD = 50.8 ± 9.2 years) who had completed FACT-Cog v.3.0, blood draws and questionnaires. Regression model was used to fit the magnitude of change in each respective biomarker levels against overall cognitive impairment status while adjusting for clinically important covariates. There was reduction in mean plasma levels of estradiol and DHEAS during and towards the end of chemotherapy (p-values < 0.001). Compared to non-impaired patients, smaller magnitude of decline was observed in DHEA(S) levels in patients reporting CRCI, with significant association between decline in DHEAS levels and acute onset of CRCI at 6 weeks from baseline (adjusted ß of 0.40, p-value of 0.02). In contrast, patients reporting CRCI showed greater magnitude of decline in estradiol compared to non-impaired patients, although this was not found to be statistically significant. There was an association between magnitude of change in biomarker levels with self-reported CRCI which suggests that the hormonal pathway related to DHEAS may be implicated in acute CRCI for breast cancer survivors. Our findings help to improve biological understanding of the pathway from which DHEAS may correlate with cognitive dysfunction and its impact on cancer survivors.
Assuntos
Neoplasias da Mama , Disfunção Cognitiva , Neoplasias da Mama/complicações , Neoplasias da Mama/tratamento farmacológico , Desidroepiandrosterona , Sulfato de Desidroepiandrosterona , Estradiol , Feminino , Humanos , Sulfatos/uso terapêuticoRESUMO
Gefitinib and erlotinib are epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) with activity against metastatic non-small cell lung cancer. Aldehyde oxidase-1 (AOX1) is a cytosolic drug-metabolizing enzyme. We conducted an experimental and molecular docking study on the effect of gefitinib, erlotinib, and select metabolites on the in vitro catalytic activity of AOX1, as assessed by carbazeran 4-oxidation, and determined the impact of AOX1 inhibition on hepatic metabolism of zaleplon and methotrexate. Gefitinib, desmorpholinopropylgefitinib, erlotinib, desmethylerlotinib, and didesmethylerlotinib inhibited human hepatic cytosolic carbazeran 4-oxidation by a competitive mode, with inhibition constants in submicromolar or low micromolar concentrations. Desmethylgefitinib did not affect AOX1 catalytic activity. A similar pattern was obtained when investigated with human kidney cytosol or recombinant AOX1. The differential effect of gefitinib on human, rat, and mouse hepatic AOX1 catalytic activity suggests species-dependent chemical inhibition of AOX1. Erlotinib was considerably more potent than gefitinib in decreasing hepatic cytosolic zaleplon 5-oxidation and methotrexate 7-oxidation. Molecular docking analyses provided structural insights into the interaction between EGFR-TKIs and AOX1, with key residues and bonds identified, which provided favorable comparison and ranking of potential inhibitors. Based on the US Food and Drug Administration guidance to assess the risk of drug-drug interactions, the calculated R1 values indicate that further investigations are warranted to determine whether gefitinib and erlotinib impact AOX1-mediated drug metabolism in vivo. Overall, erlotinib desmethylerlotinib, didesmethylerlotinib, gefitinib, and desmorpholinopropylgefitinib are potent inhibitors of human AOX1 catalytic function and hepatic metabolism of zaleplon and methotrexate, potentially affecting drug efficacy or toxicity. SIGNIFICANCE STATEMENT: As epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs), gefitinib and erlotinib are first-line pharmacotherapy for metastatic non-small cell lung cancer. Our experimental findings indicate that clinically relevant concentrations of gefitinib, desmorpholinopropylgefitinib, erlotinib, desmethylerlotinib, and didesmethylerlotinib, but not desmethylgefitinib, inhibit human aldehyde oxidase (AOX1) catalytic activity and hepatic cytosolic metabolism of zaleplon and methotrexate. Molecular docking analysis provide structural insights into the key AOX1 interactions with these EGFR-TKIs. Our findings may trigger improved strategies for new EGFR-TKI design and development.
Assuntos
Acetamidas/metabolismo , Aldeído Oxidase/antagonistas & inibidores , Cloridrato de Erlotinib/farmacologia , Gefitinibe/farmacologia , Fígado/efeitos dos fármacos , Metotrexato/metabolismo , Simulação de Acoplamento Molecular , Pirimidinas/metabolismo , Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Cloridrato de Erlotinib/metabolismo , Gefitinibe/metabolismo , Humanos , Fígado/metabolismo , Conformação ProteicaRESUMO
Tamoxifen, raloxifene, and nafoxidine are selective estrogen receptor modulators (SERMs) reported to inhibit the catalytic activity of human aldehyde oxidase 1 (AOX1). How these drugs interact with AOX1 and whether other SERMs inhibit this drug-metabolizing enzyme are not known. Therefore, a detailed in vitro and in silico study involving parent drugs and their analogs was conducted to investigate the effect of specific SERMs, particularly acolbifene, bazedoxifene, and lasofoxifene on AOX1 catalytic activity, as assessed by carbazeran 4-oxidation, an AOX1-selective catalytic marker. The rank order in the potency (based on IC50 values) of AOX1 inhibition by SERMs was raloxifene > bazedoxifene â¼ lasofoxifene > tamoxifen > acolbifene. Inhibition of liver cytosolic AOX1 by bazedoxifene, lasofoxifene, and tamoxifen was competitive, whereas that by raloxifene was noncompetitive. Loss of 1-azepanylethyl group increased the inhibitory potency of bazedoxifene, whereas the N-oxide group decreased it. The 7-hydroxy group and the substituted pyrrolidine ring attached to the tetrahydronaphthalene structure contributed to AOX1 inhibition by lasofoxifene. These results are supported by molecular-docking simulations in terms of predicted binding modes, encompassing binding orientation and efficiency, and analysis of key interactions, particularly hydrogen bonds. The extent of AOX1 inhibition by bazedoxifene was increased by estrone sulfate and estrone. In summary, SERMs differentially inhibited human AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contributed to AOX1 inhibition, whereas those of acolbifene rendered it considerably less susceptible to AOX1 inhibition. Overall, our novel biochemical findings and molecular-docking analyses provide new insights into the interaction between SERMs and AOX1. SIGNIFICANCE STATEMENT: Aldehyde oxidase (AOX1) is a molybdo-flavoprotein and has emerged as a drug-metabolizing enzyme of potential therapeutic importance because drugs have been identified as AOX1 substrates. Selective estrogen receptor modulators (SERM), which are drugs used to treat and prevent various conditions, differentially inhibit AOX1 catalytic activity. Structural features of bazedoxifene and lasofoxifene contribute to AOX1 inhibition, whereas those of acolbifene render it considerably less susceptible to AOX1 inhibition. Our novel biochemical findings, together with molecular- docking analyses, provide new insights into the differential inhibitory effect of SERMs on the catalytic activity of human AOX1, how SERMs bind to AOX1, and increase our understanding of the AOX1 pharmacophore in the inhibition of AOX1 by drugs and other chemicals.
Assuntos
Aldeído Oxidase/antagonistas & inibidores , Indóis/farmacologia , Simulação de Acoplamento Molecular , Pirrolidinas/farmacologia , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Tetra-Hidronaftalenos/farmacologia , Aldeído Oxidase/química , Aldeído Oxidase/metabolismo , Sítios de Ligação , Feminino , Humanos , Fígado/enzimologia , Masculino , Ligação ProteicaRESUMO
Lithocholic acid is a cytotoxic bile acid oxidized at the C-3 position by human cytochrome P450 3A (CYP3A) to form 3-ketocholanoic acid, but it is not known whether this metabolite is cytotoxic. Tocotrienols, in their various isomeric forms, are vitamin E analogues. In the present study, the hypothesis to be tested is that tocotrienols inhibit CYP3A-catalyzed lithocholic acid 3-oxidation, thereby influencing lithocholic acid cytotoxicity. Our enzyme catalysis experiments indicated that human recombinant CYP3A5 in addition to CYP3A4, liver microsomes, and intestinal microsomes catalyzed lithocholic acid 3-oxidation to form 3-ketocholanoic acid. Liver microsomes with the CYP3A5*1/*3 and CYP3A5*3/*3 genotypes were associated with decreased lithocholic acid 3-oxidation. α-Tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture, but not α-tocopherol (a vitamin E analogue), differentially inhibited lithocholic acid 3-oxidation catalyzed by liver and intestinal microsomes and recombinant CYP3A4 and CYP3A5. Compared to lithocholic acid 3-oxidation, CYP3A-catalyzed testosterone 6ß-hydroxylation was inhibited to a lesser extent by α-tocotrienol, γ-tocotrienol, δ-tocotrienol, and a tocotrienol-rich vitamin E mixture. δ-Tocotrienol inhibited lithocholic acid 3-oxidation by a mixed mode. Like lithocholic acid, 3-ketocholanoic acid was also cytotoxic in human intestinal and liver cell models. δ-Tocotrienol decreased the extent of lithocholic acid 3-oxidation and this inhibition was associated with enhanced cytotoxicity in LS180 cells treated with δ-tocotrienol and lithocholic acid. Overall, vitamin E analogues inhibited in vitro lithocholic acid 3-oxidation in an isomer-dependent manner, with inhibition occurring with tocotrienols, but not α-tocopherol. The enhanced lithocholic acid toxicity by δ-tocotrienol in a human intestinal cell model warrants future investigations in vivo.
Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Ácido Litocólico/toxicidade , Microssomos/efeitos dos fármacos , Vitamina E/análogos & derivados , Vitamina E/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromo P-450 CYP3A/metabolismo , Feminino , Humanos , Masculino , Microssomos/metabolismo , OxirreduçãoRESUMO
STUDY OBJECTIVE: Dehydroepiandrosterone (DHEA) and its sulfated form (DHEAS)-jointly referred to as DHEA(S)-are neurosteroids known to regulate brain development and function that have been found to be positively correlated with cognitive function. It is unknown whether prechemotherapy plasma DHEA(S) levels are associated with the onset of cancer-related cognitive impairment (CRCI). The objective of this study was to evaluate whether an association exists between prechemotherapy plasma DHEA(S) levels and onset of CRCI in patients with breast cancer receiving chemotherapy. DESIGN: Multicenter, prospective cohort study. SETTING: Two specialized cancer centers in Singapore. PATIENTS: Eighty-one patients with early-stage breast cancer (stages I-III) who had no prior exposure to chemotherapy and/or radiotherapy and were scheduled to receive anthracycline-based or taxane-based chemotherapy treatment with curative intent. MEASUREMENTS AND MAIN RESULTS: Patients completed assessments for self-perceived and objective cognitive function at three time points: prechemotherapy (T1), during chemotherapy (T2), and after chemotherapy (T3). Plasma samples were collected prior to chemotherapy, and DHEA(S) levels were quantified by using ultra-high-performance liquid chromatography-tandem mass spectrometry. Multivariable logistic regression was used to adjust for clinically important factors and to evaluate the association between prechemotherapy plasma DHEA(S) levels and CRCI. Mean ± SD age was 48.9 ± 9.3 years, with 27.8% of patients experiencing clinically significant cognitive impairment based on global Functional Assessment of Cancer Therapy-Cognitive Function scores. The mean ± SD prechemotherapy plasma DHEAS and DHEA levels were 1.61 ± 0.91 µmol/L and 19.21 ± 13.13 nmol/L, respectively. Prechemotherapy DHEAS levels were found to be associated with impairment in the self-perceived cognitive domains of verbal fluency (adjusted odds ratio [OR] 0.27, 95% confidence interval [CI] 0.08-0.96) and mental acuity (adjusted OR 0.25, 95% CI 0.08-0.74). Conversely, DHEA levels were not associated with impairment in any cognitive subdomains. CONCLUSION: Our findings suggest that patients with higher prechemotherapy DHEAS levels had lower odds of developing self-perceived cognitive impairment. Future studies are required to further investigate the effect of DHEA(S) on specific cognitive domains and to validate our findings in independent cohorts.
Assuntos
Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Disfunção Cognitiva/sangue , Sulfato de Desidroepiandrosterona/sangue , Desidroepiandrosterona/sangue , Antineoplásicos/administração & dosagem , Neoplasias da Mama/sangue , Neoplasias da Mama/psicologia , Estudos de Coortes , Feminino , Humanos , Modelos Logísticos , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Valor Preditivo dos Testes , Estudos Prospectivos , SingapuraRESUMO
Lithocholic acid (LCA) is a bile acid associated with adverse effects, including cholestasis, and it exists in vivo mainly as conjugates known as glyco-LCA (GLCA) and tauro-LCA (TLCA). Tamoxifen has been linked to the development of cholestasis, and it inhibits sulfotransferase 2A1 (SULT2A1)-catalyzed dehydroepiandrosterone (DHEA) sulfonation. The present study was done to characterize the sulfonation of LCA, GLCA, and TLCA and to investigate whether triphenylethylene (clomifene, tamoxifen, toremifene, ospemifene, droloxifene), benzothiophene (raloxifene, arzoxifene), tetrahydronaphthalene (lasofoxifene, nafoxidine), indole (bazedoxifene), and benzopyran (acolbifene) classes of selective estrogen receptor modulator (SERM) inhibit LCA, GLCA, and TLCA sulfonation. Human recombinant SULT2A1, but not SULT2B1b or SULT1E1, catalyzed LCA, GLCA, and TLCA sulfonation, whereas each of these enzymes catalyzed DHEA sulfonation. LCA, GLCA, and TLCA sulfonation is catalyzed by human liver cytosol, and SULT2A1 followed the substrate inhibition model with comparable apparent K m values (≤1 µM). Each of the SERMs inhibited LCA, GLCA, and TLCA sulfonation with varying potency and mode of enzyme inhibition. The potency and extent of inhibition of LCA sulfonation were attenuated or increased by structural modifications to toremifene, bazedoxifene, and lasofoxifene. The inhibitory effect of raloxifene, bazedoxifene, and acolbifene on LCA sulfonation was also observed in HepG2 human hepatocellular carcinoma cells. Overall, among the SERMs investigated, bazedoxifene and raloxifene were the most effective inhibitors of LCA, GLCA, and TLCA sulfonation. These findings provide insight into the structural features of specific SERMs that contribute to their inhibition of SULT2A1-catalyzed LCA sulfonation. Inhibition of LCA, GLCA, and TLCA detoxification by a SERM may provide a biochemical basis for adverse effects associated with a SERM.
Assuntos
Biocatálise/efeitos dos fármacos , Ácido Litocólico/análogos & derivados , Moduladores Seletivos de Receptor Estrogênico/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Ácidos Sulfônicos/metabolismo , Sulfotransferases/metabolismo , Ácido Taurolitocólico/metabolismo , Citosol/efeitos dos fármacos , Citosol/metabolismo , Células Hep G2 , Humanos , Cinética , Ácido Litocólico/metabolismo , Fígado/citologia , Oxirredução , Moduladores Seletivos de Receptor Estrogênico/metabolismo , Sulfotransferases/antagonistas & inibidoresRESUMO
The present study investigated the contribution of microsomal cytochrome P450 and cytosolic aldehyde oxidase-1 (AOX-1) to carbazeran 4-oxidation and O 6-benzylguanine 8-oxidation in human liver microsomal, cytosolic, and S9 fractions. Incubations containing carbazeran and human liver microsomes with or without exogenously added NADPH yielded comparable levels of 4-oxo-carbazeran. O 6-Benzylguanine 8-oxidation occurred in microsomal incubations, and the extent was increased by NADPH. Human recombinant CYP1A2, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5 did not catalyze carbazeran 4-oxidation, whereas CYP1A2 was highly active in O 6-benzylguanine 8-oxidation. 1-Aminobenzotriazole, a pan-cytochrome P450 inhibitor, decreased O 6-benzylguanine 8-oxidation, but not carbazeran 4-oxidation, in microsomal incubations, whereas 1-aminobenzotriazole and furafylline (a CYP1A2-selective inhibitor) did not inhibit carbazeran 4-oxidation or O 6-benzylguanine 8-oxidation in human liver S9 fraction. Carbazeran 4-oxidation in incubations containing human liver microsomes (from multiple donors and commercial suppliers) was attributed to microsomal preparations contaminated with AOX-1, as suggested by liver microsomal experiments indicating a decrease in carbazeran 4-oxidation by an AOX-1 inhibitor (hydralazine), and to detection of AOX-1 protein (at one-third the level of that in liver cytosol). Cytosolic contamination of liver microsomes was further demonstrated by the formation of dehydroepiandrosterone sulfate (catalyzed by cytosolic sulfotransferases) in liver microsomal incubations containing dehydroepiandrosterone. In conclusion, carbazeran 4-oxidation and O 6-benzylguanine 8-oxidation are enzyme-selective catalytic markers of human AOX-1, as shown in human liver S9 fraction expressing cytochrome P450 and AOX-1. This study highlights the negative impact of cytosolic contamination of liver microsomes on the interpretation of reaction phenotyping data collected in an in vitro study performed in microsomal fractions.
Assuntos
Aldeído Oxidase/metabolismo , Carbamatos/análise , Citosol/metabolismo , Guanina/análogos & derivados , Microssomos Hepáticos/metabolismo , Biocatálise , Biomarcadores/análise , Biomarcadores/metabolismo , Calibragem , Carbamatos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Desenvolvimento de Medicamentos/instrumentação , Desenvolvimento de Medicamentos/normas , Guanina/análise , Guanina/metabolismo , Humanos , Oxirredução , Padrões de ReferênciaRESUMO
Galeterone and abiraterone acetate are antiandrogens developed for the treatment of metastatic castration-resistant prostate cancer. In the present study, we investigated the effect of these drugs on dehydroepiandrosterone (DHEA) sulfonation catalyzed by human liver and intestinal cytosols and human recombinant sulfotransferase enzymes (SULT2A1, SULT2B1b, and SULT2E1) and compared their effects to those of other antiandrogens (cyproterone acetate, spironolactone, and danazol). Each of these chemicals (10 µM) inhibited DHEA sulfonation catalyzed by human liver and intestinal cytosols. Enzyme kinetic analysis showed that galeterone and abiraterone acetate inhibited human liver cytosolic DHEA sulfonation with apparent Ki values at submicromolar concentrations, whereas cyproterone acetate, spironolactone, and danazol inhibited it with apparent Ki values at low micromolar concentrations. The temporal pattern of abiraterone formation and abiraterone acetate depletion suggested that the metabolite abiraterone, not the parent drug abiraterone acetate, was responsible for the inhibition of DHEA sulfonation in incubations containing human liver cytosol and abiraterone acetate. Consistent with this proposal, similar apparent Ki values were obtained, regardless of whether abiraterone or abiraterone acetate was added to the enzymatic incubation. Abiraterone was more effective than abiraterone acetate in inhibiting DHEA sulfonation when catalyzed by human recombinant SULT2A1 or SULT2B1b. In conclusion, galeterone and abiraterone are novel inhibitors of DHEA sulfonation, as determined in enzymatic incubations containing human tissue cytosol (liver or intestinal) or human recombinant SULT enzyme (SULT2A1, SULT2B1b, or SULT1E1). Our findings on galeterone and abiraterone may have implications in drug-drug interactions and biosynthesis of steroid hormones.
Assuntos
Androstadienos/farmacologia , Androstenos/farmacologia , Benzimidazóis/farmacologia , Citosol/metabolismo , Desidroepiandrosterona/antagonistas & inibidores , Fígado/metabolismo , Sulfotransferases/metabolismo , Adolescente , Adulto , Idoso , Feminino , Humanos , Cinética , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Conflicting data exist on the effect of ginsenosides on transactivation of human glucocorticoid receptor α (herein referred to as glucocorticoid receptor), and relatively little is known regarding the effect of these chemicals on transrepression of this receptor. We investigated the effect of 20(S)-protopanaxadiol (PPD), PPD-type ginsenosides (Rb1, Rb2, Rc, Rd, Rh2, and Compound K), 20(S)-protopanaxatriol (PPT), and PPT-type ginsenosides (Re, Rf, Rg1, and Rh1) on glucocorticoid receptor binding, transactivation, and transrepression. Each ginsenoside was less efficacious than dexamethasone (positive control) in binding to the ligand-binding domain of glucocorticoid receptor. Among the ginsenosides investigated, Rh2 had the smallest IC50 value (15 ± 1µM), whereas it was 0.02 ± 0.01µM for dexamethasone. In contrast to dexamethasone, none of the ginsenosides influenced glucocorticoid receptor transactivation or transrepression in LS180 human colorectal adenocarcinoma cells, as assessed in a dual-luciferase reporter gene assay. Rh2 did not affect the endogenous mRNA level of tyrosine aminotransferase (marker for glucocorticoid receptor transactivation) or corticosteroid-binding globulin (marker for glucocorticoid receptor transrepression) in HepG2 human hepatocellular carcinoma cells. This chemical also did not alter the response by a glucocorticoid receptor agonist (dexamethasone or Compound A) in the dual-luciferase reporter gene assay or target gene expression assay. In conclusion, ginsenosides were less efficacious and less potent than dexamethasone in binding to the ligand-binding domain of glucocorticoid receptor. The number of glycosylated groups was associated with a decrease in receptor binding potency. PPD-type and PPT-type ginsenosides are not modulators of glucocorticoid receptor transactivation or transrepression in LS180 and HepG2 cells.
Assuntos
Ginsenosídeos/metabolismo , Ginsenosídeos/farmacologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Ativação Transcricional/efeitos dos fármacos , Células Hep G2 , Humanos , Ligantes , Ligação Proteica , Domínios Proteicos , Receptores de Glucocorticoides/químicaRESUMO
Pregnane X receptor (PXR) regulates the expression of many genes, including those involved in drug metabolism and transport, and has been linked to various diseases, including inflammatory bowel disease. In the present study, we determined whether carnosic acid and other chemicals in rosemary extract (carnosol, ursolic acid, and rosmarinic acid) are PXR activators. As assessed in dual-luciferase reporter gene assays, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, activated human PXR (hPXR) and mouse PXR (mPXR), whereas carnosol and ursolic acid, but not carnosic acid or rosmarinic acid, activated rat PXR (rPXR). Dose-response experiments indicated that carnosic acid, carnosol, and ursolic acid activated hPXR with EC50 values of 0.79, 2.22, and 10.77µM, respectively. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, transactivated the ligand-binding domain of hPXR and recruited steroid receptor coactivator-1 (SRC-1), SRC-2, and SRC-3 to the ligand-binding domain of hPXR. Carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, increased hPXR target gene expression, as shown by an increase in CYP3A4, UGT1A3, and ABCB1 mRNA expression in LS180 human colon adenocarcinoma cells. Rosmarinic acid did not attenuate the extent of hPXR activation by rifampicin, suggesting it is not an antagonist of hPXR. Overall, carnosic acid, carnosol, and ursolic acid, but not rosmarinic acid, are hPXR agonists, and carnosic acid shows species-dependent activation of hPXR and mPXR, but not rPXR. The findings provide new mechanistic insight on the effects of carnosic acid, carnosol, and ursolic acid on PXR-mediated biological effects.
Assuntos
Abietanos/farmacologia , Cinamatos/farmacologia , Depsídeos/farmacologia , Receptores de Esteroides/agonistas , Triterpenos/farmacologia , Abietanos/química , Animais , Linhagem Celular , Cinamatos/química , Depsídeos/química , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Camundongos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Receptor de Pregnano X , Ratos , Receptores de Esteroides/metabolismo , Rosmarinus/química , Triterpenos/química , Ácido Rosmarínico , Ácido UrsólicoRESUMO
The inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with a complex etiology. IBD is thought to arise in genetically susceptible individuals in the context of aberrant interactions with the intestinal microbiota and other environmental risk factors. Recently, the pregnane X receptor (PXR) was identified as a sensor for microbial metabolites, whose activation can regulate the intestinal epithelial barrier. Mutations in NR1I2, the gene that encodes the PXR, have been linked to IBD, and in animal models, PXR deletion leads to barrier dysfunction. In the current study, we sought to assess the mechanism(s) through which the PXR regulates barrier function during inflammation. In Caco-2 intestinal epithelial cell monolayers, tumor necrosis factor-α/interferon-γ exposure disrupted the barrier and triggered zonula occludens-1 relocalization, increased expression of myosin light-chain kinase (MLCK), and activation of c-Jun N-terminal kinase 1/2 (JNK1/2). Activation of the PXR [rifaximin and [[3,5-Bis(1,1-dimethylethyl)-4-hydroxyphenyl]ethenylidene]bis-phosphonic acid tetraethyl ester (SR12813); 10 µM] protected the barrier, an effect that was associated with attenuated MLCK expression and JNK1/2 activation. In vivo, activation of the PXR [pregnenolone 16α-carbonitrile (PCN)] attenuated barrier disruption induced by toll-like receptor 4 activation in wild-type, but not Pxr-/-, mice. Furthermore, PCN treatment protected the barrier in the dextran-sulfate sodium model of experimental colitis, an effect that was associated with reduced expression of mucosal MLCK and phosphorylated JNK1/2. Together, our data suggest that the PXR regulates the intestinal epithelial barrier during inflammation by modulating cytokine-induced MLCK expression and JNK1/2 activation. Thus, targeting the PXR may prove beneficial for the treatment of inflammation-associated barrier disruption in the context of IBD.
Assuntos
Citocinas/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Receptores de Esteroides/metabolismo , Animais , Células CACO-2 , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Sulfato de Dextrana/farmacologia , Ativação Enzimática/efeitos dos fármacos , Células Hep G2 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/farmacologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , NF-kappa B/metabolismo , Receptor de Pregnano X , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Lithocholic acid (LCA), a hepatotoxic and carcinogenic bile acid, is metabolized to 3-ketocholanoic acid (3-KCA) by cytochrome P450 3A (CYP3A). In the present study, the objectives were to develop and validate an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify 3-KCA and apply it to the human liver microsomal CYP3A-dependent LCA 3-oxidation assay. Chromatographic separation was achieved on a Waters ACQUITY™ UPLC C18 column (50×2.1mm, 1.7µm) with a gradient system consisting of 0.1% v/v formic acid in water (solvent A) and 0.1% v/v formic acid in acetonitrile (solvent B). The retention time was 3.73min for 3-KCA and 2.73min for cortisol (internal standard). Positive electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify 3-KCA (m/z 375.4â135.2) and cortisol (m/z 363.5â121.0). The limit of detection of 3-KCA was 10µM, the lower limit of quantification was 33.3µM, and the calibration curve was linear from 0.05-10µM with r(2)>0.99. Intra-day and inter-day accuracy and precision were <13.7%. The quality control samples were stable when assessed after 4h at room temperature, 24h at 4°C, 14days at -20°C, and three freeze-thaw cycles. The liver microsomal matrix did not affect 3-KCA quantification. The amount of KCA formed in the human liver microsomal LCA 3-oxidation assay was linear with respect to the amount of microsomal protein (up to 40µg) and incubation time (5-30min). Enzyme kinetics experiment indicated that LCA 3-oxidation followed the Michaelis-Menten model with an apparent Km of 26±7µM and Vmax of 303±50pmol/min/mg protein. This novel UPLC-MS/MS method for quantifying 3-KCA offers a specific, sensitive, and fast approach to determine liver microsomal LCA 3-oxidation.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citocromo P-450 CYP3A/metabolismo , Ácido Litocólico/análogos & derivados , Microssomos Hepáticos/metabolismo , Humanos , Limite de Detecção , Modelos Lineares , Ácido Litocólico/análise , Ácido Litocólico/metabolismo , Oxirredução , Reprodutibilidade dos TestesRESUMO
It has been reported that quercetin is an activator of rat vitamin D receptor (rVDR). However, the conclusion was based on experiments performed without all the appropriate control groups, raising the possibility of a false-positive finding. Furthermore, distinct differences exist in the chemical structures of quercetin and 1α,25-dihydroxyvitamin D3, which is a prototypic agonist of VDR. Therefore, we investigated systematically whether quercetin and other flavonols are agonists of rVDR, mouse VDR (mVDR), or human VDR (hVDR). Quercetin, 3-hydroxyflavone, galangin, datiscetin, kaempferol, morin, isorhamnetin, tamarixetin, myricetin, and syringetin did not activate rVDR, mVDR, or hVDR in HEK-293 and HepG2 cells transfected with the corresponding receptor expression plasmid and either the secreted phosphoprotein 1 (Spp1) or cytochrome P450 24A1 (CYP24A1) reporter plasmid, when compared to the respective empty vector control group transfected with one or the other reporter plasmid and treated with one of the flavonols. Control analysis indicated that lithocholic acid and 1α,25-dihydroxyvitamin D3, but not rifampicin, activated rVDR, mVDR, and hVDR. As shown in transfected HEK293 and HepG2 cells, the flavonols did not influence hVDR ligand binding domain transactivation, steroid receptor coactivator-1 recruitment, or hVDR target gene expression (transient receptor potential cation channel 6 and CYP24A1) in hVDR-expressing Caco-2 or LS180 cells. The cumulative data from the cell-based experiments were corroborated by results obtained from molecular docking analysis. In conclusion, quercetin, 3-hydroxyflavone, galangin, datiscetin, kaempferol, morin, isorhamnetin, tamarixetin, myricetin, and syringetin are not agonists of rVDR, mVDR, or hVDR, as judged by cell-based and in silico evidence.
Assuntos
Calcitriol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Quercetina/farmacologia , Receptores de Calcitriol/genética , Animais , Células CACO-2 , Dissacarídeos/farmacologia , Flavonoides/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Quempferóis/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Osteopontina/genética , Osteopontina/metabolismo , Quercetina/análogos & derivados , Receptores de Calcitriol/agonistas , Receptores de Calcitriol/metabolismo , Relação Estrutura-Atividade , Transgenes , Vitamina D3 24-Hidroxilase/genética , Vitamina D3 24-Hidroxilase/metabolismoRESUMO
Detoxification of lithocholic acid (LCA) to lithocholic acid sulfate (LCA-S) is catalyzed by sulfotransferases, mainly SULT2A1. We developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify human liver cytosolic-dependent LCA sulfation. Chromatographic separation was achieved on an UPLC C18 column (2.1×50mm, 1.7µm) and a gradient elution of 0.1% formic acid in water and acetonitrile. Negative electrospray ionization with multiple reaction monitoring (MRM) mode was used to quantify LCA-S (455.3â97.0) and cholic acid (407.2â343.3; internal standard). The retention time was 3.51min for LCA-S and 3.08min for cholic acid. The lower limit of quantification of LCA-S was 0.5nM (or 0.23ng/ml in 400µl total volume) and the assay was linear from 0.2 to 200pmol. Intra-day and inter-day accuracy and precision were <14%. The quality control samples were stable at room temperature for 4h, 4°C for 24h, -20°C for 14 days, and after three freeze-thaw cycles. The matrix (20-100µg cytosolic protein) did not affect LCA-S quantification. This is the first UPLC-MS/MS method applied to optimization of the human liver cytosolic LCA sulfation assay. The optimal levels of MgCl2 and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) cofactor were 2.5mM and 20µM, respectively. Addition of reducing agents (2-mercaptoethanol and DL-dithiothreitol) did not affect LCA-S formation. Human liver cytosolic LCA sulfation was linear with 20-100µg of cytosolic protein and 5-30min incubation time. This UPLC-MS/MS approach offers a specific, sensitive, fast, and direct approach for quantifying human liver cytosolic LCA sulfation.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Citosol/química , Ácido Litocólico/análogos & derivados , Espectrometria de Massas em Tandem/métodos , Estabilidade de Medicamentos , Humanos , Modelos Lineares , Ácido Litocólico/análise , Ácido Litocólico/química , Fígado/citologia , Reprodutibilidade dos Testes , Sensibilidade e EspecificidadeRESUMO
Sulfotransferase 2A1 (SULT2A1) is a major catalyst of the sulfation of dehydroepiandrosterone (DHEA) to dehydroepiandrosterone sulfate (DHEA-S) in human liver cytosol. However, there is a lack of a sensitive and fast analytical method for the human liver cytosolic SULT2A1-dependent DHEA sulfation assay. Therefore, we developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometric (UPLC-MS/MS) method to quantify DHEA-S and used it to optimize the human liver cytosolic SULT2A1-dependent DHEA sulfation assay. DHEA-S and cortisol (internal standard) eluted at 2.95 and 2.75min, respectively. Negative multiple reaction monitoring was used to quantify DHEA-S (m/z 367.3â97.0) and cortisol (m/z 407.2â331.3). No interfering peaks were observed in blank samples. The lower limit of quantification was 0.2pmol DHEA-S and the calibration curve was linear from 0.2 to 200pmol. The intra-day and inter-day accuracy and precision was <11.7%. DHEA-S in the quality control samples was stable at room temperature, 4°C, and -20°C. The cytosolic matrix (20-100µg cytosolic protein) did not affect DHEA-S quantification. Our UPLC-MS/MS method was applied to optimize the human liver cytosolic SULT2A1-dependent DHEA sulfation assay. The optimal levels of MgCl2 and 3'-phosphoadenosine 5'-phosphosulfate (PAPS) cofactor were 2.5mM and 20µM, respectively. Reducing agents, including 2-mercaptoethanol and DL-dithiothreitol, did not affect the enzyme activity. A linear relationship existed between DHEA sulfation and amount of human liver cytosol (20-200µg cytosolic protein) or incubation time (5-30min). This UPLC-MS/MS approach is safer, easier, and faster than existing radiometric-based sulfotransferase enzyme assays, and it is the first UPLC-MS/MS method for determining SULT2A1-dependent DHEA sulfation in human liver cytosol.
Assuntos
Fígado/enzimologia , Sulfotransferases/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , Humanos , Sulfotransferases/metabolismoRESUMO
Meclizine is an agonist of human pregnane X receptor (PXR). It increases CYP3A4 mRNA expression, but decreases CYP3A-catalyzed testosterone 6ß-hydroxylation in primary cultures of human hepatocytes, as assessed at 24h after the last dose of meclizine. Therefore, the hypothesis to be tested is that meclizine inactivates human CYP3A enzymes. Our findings indicated that meclizine directly inhibited testosterone 6ß-hydroxylation catalyzed by human liver microsomes, recombinant CYP3A4, and recombinant CYP3A5. The inhibition of human liver microsomal testosterone 6ß-hydroxylation by meclizine occurred by a mixed mode and with an apparent Ki of 31±6µM. Preincubation of meclizine with human liver microsomes and NADPH resulted in a time- and concentration-dependent decrease in testosterone 6ß-hydroxylation. The extent of inactivation required the presence of NADPH, was unaffected by nucleophilic trapping agents or reactive oxygen species scavengers, attenuated by a CYP3A substrate, and not reversed by dialysis. Meclizine selectively inactivated CYP3A4, but not CYP3A5. In contrast to meclizine, which has a di-substituted piperazine ring, norchlorcyclizine, which is a N-debenzylated meclizine metabolite with a mono-substituted piperazine ring, did not inactivate but directly inhibited hepatic microsomal CYP3A activity. In conclusion, meclizine inhibited human CYP3A enzymes by both direct inhibition and mechanism-based inactivation. In contrast, norchlorcyclizine is a direct inhibitor but not a mechanism-based inactivator. Furthermore, a PXR agonist may also be an inhibitor of a PXR-regulated enzyme, thereby giving rise to opposing effects on the functional activity of the enzyme and indicating the importance of measuring the catalytic activity of nuclear receptor-regulated enzymes.
Assuntos
Inibidores do Citocromo P-450 CYP3A/farmacologia , Citocromo P-450 CYP3A/metabolismo , Meclizina/farmacologia , Receptores de Esteroides/agonistas , Inibidores do Citocromo P-450 CYP3A/química , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Cinética , Meclizina/química , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Modelos Biológicos , Estrutura Molecular , Piperazinas/química , Piperazinas/farmacologia , Receptor de Pregnano X , Proteínas RecombinantesRESUMO
Pregnane X receptor (PXR; NR1I2) is a member of the superfamily of nuclear receptors that regulates the expression of genes involved in various biological processes, including drug transport and biotransformation. In the present study, we investigated the effect of 3-hydroxyflavone and its structurally-related analogues on PXR activity. 3-Hydroxyflavone, galangin, kaempferol, querceetin, isorhamnetin, and tamarixetin, but not but not datiscetin, morin, myricetin, or syringetin, activated mouse PXR, as assessed in a cell-based reporter gene assay. By comparison, 3-hydroxyflavone activated rat PXR, whereas 3-hydroxyflavone, galangin, quercetin, isorhamnetin, and tamarixetin activated human PXR (hPXR). A time-resolved fluorescence resonance energy transfer competitive ligand-binding assay showed binding to the ligand-binding domain of hPXR by 3-hydroxyflavone, galangin, quercetin, isorhamnetin, and tamarixetin. 3-Hydroxyflavone and galangin, but not quercetin, isorhamnetin, or tamarixetin, recruited steroid receptor coactivator (SRC)-1, SRC-2, and SRC-3 to hPXR. In LS180 human colon adenocarcinoma cells, 3-hydroxyflavone, quercetin, and tamarixetin increased CYP3A4, CYP3A5, and ABCB1 mRNA expression, whereas galangin and isorhamnetin increased CYP3A4 and ABCB1 but not CYP3A5 mRNA expression. Datiscetin, kaempferol, morin, myricetin, and syringetin did not attenuate the extent of hPXR activation by rifampicin, suggesting they are not hPXR antagonists. Overall, flavonols activate PXR in an analogue-specific and species-dependent manner. Substitution at the C2' or C5' position of 3-hydroxyflavone with a hydroxyl or methoxy group rendered it incapable of activating hPXR. Understanding the structure-activity relationship of flavonols in hPXR activation may facilitate nutraceutical development efforts in the treatment of PXR-associated intestinal diseases, such as inflammatory bowel disease.
Assuntos
Flavonoides/farmacologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Receptores de Esteroides/metabolismo , Linhagem Celular Tumoral , Genes Reporter/efeitos dos fármacos , Células Hep G2 , Humanos , Ligantes , Receptor de Pregnano X , RNA Mensageiro/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
BACKGROUND AND PURPOSE: Rilpivirine and etravirine are second-generation non-nucleoside reverse transcriptase inhibitors (NNRTIs) indicated for the treatment of HIV/AIDS. The constitutive androstane receptor (CAR) regulates the expression of genes involved in various biological processes, including the transport and biotransformation of drugs. We investigated the effect of rilpivirine and etravirine on the activity of the wild-type human CAR (hCAR-WT) and its hCAR-SV23 and hCAR-SV24 splice variants, and compared it with first-generation NNRTIs (efavirenz, nevirapine, and delavirdine). EXPERIMENTAL APPROACH: Receptor activation, ligand-binding domain (LBD) transactivation, and co-activator recruitment were investigated in transiently transfected, NNRTI-treated HepG2 cells. Nuclear translocation of green fluorescent protein-tagged hCAR-WT and CYP2B6 gene expression were assessed in NNRTI-treated human hepatocytes. KEY RESULTS: Rilpivirine and etravirine activated hCAR-WT, but not hCAR-SV23 or hCAR-SV24, and without transactivating the LBD or recruiting steroid receptor coactivators SRC-1, SRC-2, or SRC-3. Among the first-generation NNRTIs investigated, only efavirenz activated hCAR-WT, hCAR-SV23, and hCAR-SV24, but none of them transactivated the LBD of these receptors or substantively recruited SRC-1, SRC-2, or SRC-3. Rilpivirine, etravirine, and efavirenz triggered nuclear translocation of hCAR-WT and increased hCAR target gene (CYP2B6) expression. CONCLUSION AND IMPLICATIONS: NNRTIs activate hCAR-WT, hCAR-SV23, and hCAR-SV24 in a drug-specific and isoform-selective manner. The activation occurs by a mechanism that does not appear to involve binding to the LBD or recruitment of SRC-1, SRC-2, or SRC-3.
Assuntos
Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Piridazinas/farmacologia , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Citoplasmáticos e Nucleares/genética , Inibidores da Transcriptase Reversa/farmacologia , Rilpivirina/farmacologia , Adolescente , Adulto , Idoso , Receptor Constitutivo de Androstano , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Relação Dose-Resposta a Droga , Feminino , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Masculino , Estrutura Molecular , Nitrilas , Piridazinas/química , Pirimidinas , Receptores Citoplasmáticos e Nucleares/metabolismo , Inibidores da Transcriptase Reversa/química , Rilpivirina/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Adulto JovemRESUMO
The naturally occurring SV23 splice variant of human constitutive androstane receptor (hCAR-SV23) is activated by di-(2-ethylhexyl)phthalate (DEHP), which is detected as a contaminant in fetal bovine serum (FBS). In our initial experiment, we compared the effect of dialyzed FBS, charcoal-stripped, dextran-treated FBS (CS-FBS), and regular FBS on the basal activity and ligand-activation of hCAR-SV23 in a cell-based reporter gene assay. In transfected HepG2 cells cultured in medium supplemented with 10% FBS, basal hCAR-SV23 activity varied with the type of FBS (regular>dialyzed>CS). DEHP increased hCAR-SV23 activity when 10% CS-FBS, but not regular FBS or dialyzed FBS, was used. With increasing concentrations (1-10%) of regular FBS or CS-FBS, hCAR-SV23 basal activity increased, whereas in DEHP-treated cells, hCAR-SV23 activity remained similar (regular FBS) or slightly increased (CS-FBS). Subsequent experiments identified a serum-free culture condition to detect DEHP activation of hCAR-SV23. Under this condition, artemisinin, artemether, and arteether increased hCAR-SV23 activity, whereas they decreased it in cells cultured in medium supplemented with 10% regular FBS. By comparison, FBS increased the basal activity of the wild-type isoform of hCAR (hCAR-WT), whereas it did not affect the basal activity of the SV24 splice variant (hCAR-SV24) or ligand activation of hCAR-SV24 and hCAR-WT by 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). The use of serum-free culture condition was suitable for detecting CITCO activation of hCAR-WT and hCAR-SV24. In conclusion, FBS leads to erroneous classification of pharmacological ligands of hCAR-SV23 in cell-based assays, but investigations on functional ligands of hCAR isoforms can be conducted in serum-free culture condition.
Assuntos
Artemisininas/farmacologia , Bioensaio/métodos , Receptores Androgênicos/efeitos dos fármacos , Soro/metabolismo , Artemeter , Técnicas de Cultura de Células , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Genes Reporter , Células Hep G2 , Humanos , Ligantes , Isoformas de Proteínas , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo , TransfecçãoRESUMO
BACKGROUND AND PURPOSE: Naturally occurring splice variants of human CAR (hCAR), including hCAR-SV23 (insertion of amino acids SPTV) and hCAR-SV24 (APYLT), have been shown to be expressed in liver. However, little is known regarding how hCAR-SV23 and hCAR-SV24 are activated. Therefore, we investigated the mode of activation of these hCAR splice variants. EXPERIMENTAL APPROACH: Cell-based reporter gene assays, including ligand-binding domain transactivation assays and coactivator recruitment assays, were conducted on cultured HepG2 cells transfected with various constructs and treated with 3-hydroxyflavone or a hydroxylated (galangin, datiscetin, kaempferol, morin, quercetin or myricetin) or methylated (isorhamnetin, tamarixetin, or syringetin) analogue. KEY RESULTS: Among the flavonols investigated, only 3-hydroxyflavone increased hCAR-SV23 and hCAR-SV24 activities. 3-Hydroxyflavone did not transactivate the ligand-binding domain of these isoforms or recruit steroid receptor coactivators (SRC-1, SRC-2, or SRC-3). By comparison, 3-hydroxyflavone, galangin, datiscetin, kaempferol, quercetin, isorhamnetin and tamarixetin activated hCAR-WT, whereas none of the flavonols activated hCAR-SV25 (both SPTV and APYLT insertions). The flavonols 3-Hydroxyflavone, galangin, quercetin and tamarixetin transactivated the ligand-binding domain of hCAR-WT, but only 3-hydroxyflavone recruited SRC-1, SRC-2 and SRC-3 to the receptor. CONCLUSION AND IMPLICATIONS: hCAR-SV23 and hCAR-SV24 can be activated by a mechanism that does not involve the ligand-binding domain of the receptor or recruitment of SRC-1, SRC-2, or SRC-3. 3-Hydroxyflavone and its structural analogues activated hCAR in an isoform-selective and chemical-specific manner. Overall, our study provides insight into a novel mode of ligand activation of hCAR-SV23 and hCAR-SV24.